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Abstract

We propose that hyper-inflammation (HYPi) is a ‘‘runaway’’ consequence of acute

inflammation (ACUi) that arises more easily (and also abates less easily) in those who

host a pre-existing chronic inflammation (CHRi), because (i) most factors involved

in generating an ACUi to limit viral proliferation are already present when there is

an underlying CHRi, and also because (ii) anti-inflammatory (AI) mechanisms for the

abatement of ACUi (following containment of viral proliferation) are suppressed and

desensitized where there is an underlying CHRi, with this causing the ACUi to spiral

into a HYPi. Stress, pollution, diet, and gut microbiomes (alterable in weeks through

dietary changes) have an intimate and bidirectional cause-effect relationship with

CHRi. We propose that avoidance of CHRi-promoting foods and adoption of CHRi-

suppressing foods could reduce susceptibility to HYPi, in Covid-19 and in other viral

diseases, such as influenza, which are characterized by episodic and unpredictable

HYPi.
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Exposure to viruses is a fait accompli for much of the planet’s popula-

tion. With SARS-CoV-2, successive waves of infection by newmutants

and variants suggest that everyone is at risk of being exposed to a

greater or lesser degree, either sooner or later. It is important to iden-

tify those with the highest probability of developing severe disease,

in order to focus efforts at mitigation or prevention. This article dis-

cusses factors that might predispose individuals to developing severe

Covid-19. It argues that more attention must be paid to the possibility

of diet-derived chronic inflammation (CHRi) being themost important,

and fundamental, of all predisposing factors.

COVID-19: DESCRIPTORS AND FACTORS
AFFECTING SUSCEPTIBILITY TO SEVERE DISEASE

Early descriptors

Early Covid-19 reports indicated the following: (a) pneumonia

is the most serious consequence of the disease;[1] (b) infection

involves only respiratory epithelial cells rich in ACE2 membrane

receptors;[2] (c) infection causes severe symptoms mainly in the aged,

and those with serious medical conditions, but not in the young;[3] and
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(d) establishment of infection leads to high morbidity, and a case

fatality rate (CFR) approaching 15%.[1]

Later descriptors

After the passage of some months, the above descriptors were sub-

stantially amended. Newer indicators indicated that a SARS-Cov-2

infection can: (i) fail to cause pneumonia;[4] (ii) be causative of severe,

varied and inexplicable formsof disease in the heart, kidney, or brain;[4]

(iii) involve secondary lymphoid organs;[5] (iv) cause severe disease in

young individuals;[6] (v) cause hospitalization of individuals who have

no known, or identified, pre-existing health conditions, with over sixty

percent of those hospitalized falling in this category;[7] (vi) be asymp-

tomatic, or mildly symptomatic;[8] (vii) have a CFR in the low single

digits;[9] (viii) involve thrombotic complications in the microvascula-

ture, associated with morbidity, or mortality;[10] (ix) affect black and

minority ethnicity (BAME) individuals more than others;[11] (x) affect

men more than women;[12] (xi) cause symptoms akin to Kawasaki dis-

ease in children;[13] and (xii) cause severe and silent hypoxemia or

hypoxia in tissues, without any signs of classical pneumonia,[14] with

none of these factors achieving a hundred percent penetration within

any of thementioned sub-populations.

Susceptibility

Besides factors such as age, ethnicity, sex/gender, and pre-existing con-

ditions, additional factors such asHLAantigen types,[15] levels of expo-

sure to the virus,[16] and overall immune status[17,18] appear to be

indicative in determining susceptibility to severe Covid-19.

Interventions

No intervention is conceivable in respect of genetics, ethnicity or gen-

der. A combination of mask-wearing, social distancing, and curfews

would appear to be mitigating the spreading of infection by control-

ling exposure. Vaccines [working on principles ranging from the use

of heat-inactivated virus (Bharat Biotech and Sinopharm) to use of

infection-competent but replication-deficient adenovirus-derived pro-

duction of spike protein in vivo (Oxford-Astra Zeneca, Johnson& John-

son, and Sputnik) to use of encapsulated mRNA and cell fusion-based

production of spike protein in vivo (Pfizer and Moderna)] appear to

hold promise in reducing morbidity and mortality. Anti-inflammatory

(AI)medication has becomepart of the protocol of treatment, in efforts

to reduce hyper-inflammation (HYPi).

Refinement of the susceptibility question

Wedo not yet understandwhatmakes one person susceptible toHYPi,

but another asymptomatic. Since themajority of those infected appear

to remain asymptomatic, ormildly symptomatic,[8] it could be useful to

identify those who are susceptible to severe disease, or death,[19] to

explore scope for further intervention at the level of individuals.

THE IMPORTANCE OF THE INNATE IMMUNE
SYSTEM

Two types of immune systems operate with every human being; these

being the innate, and adaptive, immune systems. The two act indepen-

dently but also cooperate, interlacing their cellular/molecular compo-

nents and functions.[20]

The adaptive immune system is too slow, and
suppressed by the virus

The adaptive immune system which gives rise to antibodies is slower

in responding, but more accurate and specific to pathogens,[17] taking

1–3 weeks to respond to new pathogens (or antigens) and> 1 week to

reactivate pre-existing immunity. It is thus useful for slowly-developing

diseases in which patients cannot die before antibodies are gener-

ated. With SARS-Cov-2, severe disease can develop within a week

of infection.[4] Thus, the adaptive immune system is good from the

viewpoint of vaccination, in those who have not yet been exposed,

as well as in those who have been exposed without serious conse-

quences, but it cannot help those who develop severe early disease.

Evenmore importantly, cytotoxic (CD8+) T cells and natural killer (NK)

cells are ‘‘exhausted’’ and non-optimal in efficacy during a SARS-Cov-

2 infection,[21,22] suggesting that the adaptive immune system is also

substantially suppressed by an infection.

A normally-functioning innate immune system limits
pathogen proliferation through acute inflammation

Unlike the adaptive immune system, the innate immune system is

faster in responding, but less specific to pathogens. It uses a multi-

tude of cell types, cytokines, chemokines, and organ- or tissue-derived

secretions to mount inflammation at sites of viral entry, to lower viral

loads and ensure survival of the individual until the adaptive immune

response can bemounted.[18]

A normally-functioning innate immune system
mounts only the necessary amount of acute
inflammation

In the initial innate response, neutrophils and macrophages happen to

prime subsequent responses from cytotoxic (CD8+) T cells and NK

cells, including via dendritic cells.[18] The response is finely tuned, and

calibrated to generate the required level of inflammation in tissues

(e.g. skin, eyes, nostrils, mouth, respiratory tract, or gastro-intestinal
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tract) that first encounter the virus, throughhomeostasis betweenpro-

inflammatory (PI) and anti-inflammatory (AI) pathways/mechanisms

involving mutually-exclusive, occasionally-overlapping, cascades and

feedback loops of cells and cytokines engaged in competition for dom-

inance. The default state is a lack of inflammation. Acute inflammation

(ACUi) arises (and also abates) rapidly to destroy viruses. To facilitate

this, provisions exist to rapidly amplify or attenuate PI and/or AI path-

ways, based on the system’s sensing of requirements and sensing of the

magnitude of the challenge.[23,24] The balance of PI andAImechanisms

can be affected by constant stimulation, and/or suppression, of inflam-

mation.

A dysfunctional innate immune system displays
under-reactions or over-reactions

The innate response becomes dysfunctional in two ways, through dis-

balance of homeostasis, involving: (i) under-generation of ACUi, due

to drug-induced immune suppression,[25] primary (genetic) immune

deficiencies,[26] nutrient deficiencies,[27] or exposure to environmen-

tal toxins;[28] or (ii) over-generation of ACUi, manifesting as HYPi,

with tissue/organ damage.[29] The causes of the latter are not fully

understood.

Hyper-inflammation, cytokine storms and organ
dysfunction in Covid-19

The severity of Covid-19 owes to HYPi-based dysfunction of infected

tissues and organs,[30–37] known variously as a cytokine storm, a sec-

ondary hemophagocytic lymphohistocytosis (sHLH), or macrophage-

activation syndrome (MAS). Cytokine storms result from the release

of certain cytokines due to infections, autoimmune diseases, or medi-

cations. In Covid-19, cytokine storms occur in virus-infected tissues, to

causeHYPi.[30] It is not yet clearwhat causes such storms to arise. This

paper proposes an explanation.

The puzzle: Is virus-induced hyper-inflammation
triggered mainly when there is a certain underlying
condition?

The questions at this point are the following: (I) Is HYPi entirely caused

by the qualities of the virus (i.e. the quality of the seed), or are there

some underlying factors that are necessary to promote its occurrence

(i.e. the qualities of the soil), independent of whether such factors

fall within the category of known pre-existing medical conditions, and

especially with regard to whether such factors might constitute previ-

ously unsuspected, or undetected, conditions? (II)Whatmechanisms, if

any, connect HYPi with such factors? (III) How does the virus reach tis-

sues and organs outside the lung, or gut, to causeHYPi in other parts of

the body?

PROPOSAL: CHRONIC INFLAMMATION (CHRi)
CAUSES VIRUS-TRIGGERED ACUTE
INFLAMMATION (ACUi) TO SPIRAL INTO
HYPER-INFLAMMATION (HYPi)

Feedback loops cause CHRi to promote HYPi by
compounding with ACUi

Upsetting of the PI-AI balance can involve long-term dominance of

one, and long-term suppression of the other, allowing the former to

enter ‘‘unchallenged’’ feedback-mode operation.[23,24] Large feedback

loops promoting a PI milieu in CHRi could potentially facilitate run-

away HYPi, during which smaller feedback loops involving thrombo-

sis play a role. It is known that inflammation begets thrombosis.[38]

It is also known that thrombosis begets inflammation.[38] Thus, feed-

back can create a PI milieu in which AI feedback loops fail to suppress

ongoing inflammation.[38,39] Acute inflammation (ACUi) due to viral

infection could cause PI feedback loops (already operating on over-

drive) to overpower AI feedback loops, and thus precipitate hyper-

inflammation (HYPi). Ordinarily, inflammation is of two types: acute

(ACUi) and chronic (CHRi).[40] ACUi arises and abates in days in

response to a transient stimulus. CHRi arises and abates much more

slowly. The two share many features, however, as well as common cell

types and cytokines. A small array of 10 cytokines generates ACUi (IL-

1, IL-6, IL-8, IL-11, IL-16, IL-17, G-CSF, TNF-alpha, Eotaxin, GM-CSF).

Out of these, a total of 7 cytokines are shared (IL-1, IL-6, IL-11, IL-

17, TNF-alpha, Eotaxin and GM-CSF) with the much larger array of

21 cytokines that ordinarily sustains CHRi (IL-1, IL-2, IL-3, IL-4, IL-

5, IL-6, IL-7, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IL-17, TNF-

alpha, TNF-beta, INF-gamma, Eotaxin, TGF-beta, and GM-CSF). Due

to this overlap between cytokines used by ACUi and CHRi, ACUi can

potentially arise in a body already beset by CHRi, through the addi-

tional production of only 3 cytokines (IL-8, IL-16, and G-CSF). Thus,

pre-existing CHRi could be a platform (or launching pad) that allows

ACUi to be launched rapidly, and also fail to abate rapidly (since AI

mechanisms are suppressed in CHRi). The feedback between inflam-

mation and thrombosis[38,39] further accelerates the ability of this pro-

cess to enter ‘‘runaway’’ mode. We propose that this is the basis of

HYPi.

Further, we draw attention to the acute phase proteins (APPs), the

most well-known of which are C-reactive protein (CRP), serum amy-

loid P (SAP), serum amyloid A (SAA), and haptoglobin (Hp). APPs are

diagnostic markers of ACUi which also help to coordinate the immune

response through both PI and AI functions. Although the term ‘‘APP’’ is

associated with ACUi, many APPs are also associated with CHRi. This

causes APPs to constitute an additional group of proteins (after the

cytokines) that contain members common to ACUi and CHRi, with PI

and AI functions, and with the potential to affect the overall balance,

in inflammation.[41] Thus, there is a possibility of the joint involvement

of the PI/AI balance of cytokines and APPs in cooperatively launch-

ing an ACUi into a HYPi, when there is an underlying, long-standing

CHRi.
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MICROBES THAT THRIVE ON CERTAIN FOODS
CAUSE CHRONIC GUT AND SYSTEMIC
INFLAMMATION

Gut microbiomes promoted by certain foods/drinks
are PI while those promoted by other foods/drinks
are AI

Connections between diet, gut microbiomes and inflammation are

described in several thousand publications. Microbes inhabit animal

and human guts, and their proliferation and abundance are profoundly

influenced by diet.[42–44] Plant-based food promotes growth of

microbes that stimulate AI mechanisms,[45–53] particularly when one

avoids foods that contain an excess of phytates, lectins, oxalates and

other substances with possible adverse effects. Red meat-based food

promotes growth of microbes that stimulate PI mechanisms,[54–81]

especially when consumed in the context of fried food and nitro-

sylated compounds, and to the exclusion of all plant-based and

green/leafy accompaniments and salads. Alcohol promotes gut and

liver inflammation.[82–107] Gluten leads to chronic inflammation of

both celiac and non-celiac varieties,[108,109] with the latter affecting

a higher fraction of the US population (6%) than the former (1%).[110]

High intake of sugar leads to a PI gut microbiome,[111] although

disagreement remains about whether fructose is more PI in character

than either glucose, or sucrose.[112] Certain polyunsaturated fats

stimulate PI mechanisms, whereas certain saturated fats stimulate AI

mechanisms; however, it must be noted that some fats, such as the

omega-3 fatty acids (which are polyunsaturated) stimulate AI mecha-

nisms, and that some animal-derived long-chain fatty acids (which are

saturated) stimulate PI mechanisms.113 This suggests that attention is

required to be paid both to the specific types of fats that are consumed

in modern lifestyles, and diet, and to individual fats and their specific

AI- or PI-related properties. PI foods cause chronic gut dysbiosis asso-

ciated with increased gut permeability, when their inclusion in the diet

is not balanced by (1) a suitable amount of AI food, with the balance of

diet weighing-in on the side of such AI foods, and (2) lifestyle factors

such as exercise. Notably, anxiety also contributes to increased intesti-

nal permeability, through a mast cell-dependent mechanism activated

by psychological stress.114,115 CHRi caused by any of the above factors

can remain undetected for years, or progress to conditions such as

irritable bowel syndrome, inflammatory bowel disease, and leaky gut

syndrome, or manifest as cardiovascular disease, diabetes mellitus,

non-alcoholic fatty liver disease, certain forms of cancer, chronic

kidney disease, or autoimmune and neurodegenerative disorders.116

It may be pertinent to mention here that, theoretically-speaking,

sub-acute and undetected CHRi in the gut could also result from mild

systemic and gut allergic responses to milk-lactose, milk-protein, eggs,

soyabean, seafood, or other allergenic foods. However, in most cases,

these substances cause severe and identifiable allergies (rather than

sub-acute and chronic reactions). Since acute food allergies are easily

identified, and allergy-causing foods are voluntarily avoided by those

who display allergies, such allergic inflammation, or ALLi (which con-

stitutes a fourth class of inflammation; beyond CHRi, ACUi and HYPi)

is unlikely to be relevant in the context of an individual’s exposure to

SARS-Cov-2.

Therefore, if one were to discount for florid food allergies, could

silent CHRi driven by food then turn out to be the fundamental under-

lying pre-existing condition that predisposes humans to severe Covid-

19? If this were the case, florid medical conditions (due to CHRi) could

be the proverbial tip of the iceberg, while undetected, asymptomatic

gut/systemic CHRi could make up the bulk of the iceberg. Could atten-

tion to diet influence the severity of Covid-19, if contracted, or even

be useful as a preventative measure? There is evidence that a change

of diet can lead to a rapid alteration of the constitutions of gut micro-

biomes in amatter of days/weeks.[43]

Perhaps a change of diet, from a PI diet to an AI diet (characterized

by a greater inclusion of CHRi-suppressing AI foods, and avoidance of

CHRi-promoting PI foods) could work to rapidly reduce an individual’s

susceptibility to developing severeCovid-19, following exposure to the

virus, or infection. If a change of diet could prevent HYPi, the body

could run its normal course of an initial innate immune response (in the

form of an ACUi, developing rapidly and also abating rapidly) followed

by an adaptive immune response (i.e. development of antibodies). This

possibility is summarized in Figure 1

Pro-inflammatory gut microbiota compromise
tissue-blood barriers to promote body-wide
dissemination of endotoxin, cytokines and viruses

PI microbes cause breaching of mucosal/cellular barriers separating

the gut’s lumen from the vasculature infiltrating its wall.[29] CHRi

elicits gut leakiness.[117] Gut leakiness too elicits CHRi.[118] Proteases

degrade tight junctions between cells in the gut’s lining, once colonic

mucosa is compromised by a PI milieu,[119] with PI cytokines further

increasing permeability, and dysbiosis, leading to circulation of bacte-

rial lipopolysachharide (LPS) or endotoxin that further dysregulates

the immune response. Gut dybiosis is associated with altered abun-

dances of short-chain fatty acids (especially butyrate) that seal the gut

and dampen immune responses. Many diseases predisposing to covid-

19 severity/fatality are associatedwith decreased butyrate (decreased

alpha diversity),[120] and increased transcellular and paracellular

hyper-permeability.[121] This suggests that it is critical for butyrate-

induced sealing to keep pace with breaching of the gut-blood barrier,

to stop episodic leakage from the digestive system into the circulatory

system. A PI milieu created and maintained in the gut prevents such

regeneration, and helps to maintain a PI milieu in the entire body (i.e,.

helps to maintain a systemic state of CHRi). This leads to breaching

of the tissue-blood barriers in various other organs (e.g. lung, liver,

kidney, or brain), offering an explanation for how SARS-Cov-2 reaches

other tissues, since SARS-CoV-2 anyway reaches the gut through the

alimentary canal, causing viral RNA to be present in fecal samples.[122]

SARS-Cov-2 infects gut enterocytes,[123] and causes alterations

in gut microbiota in Covid-19 patients.[124,125] Therefore, guts

that host CHRi due to diet can better host SARS-CoV-2 and leak

it to other tissues through formation of giant syncitia,[126] and
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Gut dominated by pro-inflammatory (PI) microbiome

Diet based on refined grain, red meat, alcohol and sugars

Gut dominated by an�-inflammatory (AI) microbiome
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F IGURE 1 Proposed progression of events relating diet to disease outcome. Panel A. The top half of this panel shows that a plant-based diet
promotes an anti-inflammatory (AI) feedback cycle, and leads to the setting up of an AI milieu that is then associated with a lack of any gut and/or
systemic chronic inflammation (CHRi). The bottom half of the same panel shows that there is a typical (rather than an over-the-top) virus-triggered
acute inflammation (ACUi), upon infection, which arises with difficulty but abates with ease because it occurs in an overall AI milieu. The end result
of infection is thus amild overall inflammatory outcome, with no hyper-inflammation (HYPi) seen. Panel B. The top half of this panel shows that a
diet based on refined grain, redmeat, alcohol and sugars, promotes a pro-inflammatory (PI) feedback cycle, and leads to the setting up of a PImilieu
that is then associated with gut and systemic CHRi. This predisposes individuals to gut dysbiosis and leakiness. The bottom half of the same panel
shows that there is thus an over-the-top, and out-of-control, virus-triggered ACUi, upon viral infection, that both occurs more easily and abates
withmore difficulty, because it occurs in an overall PI milieu that is characterized by a pre-existing chronic inflammation which desensitizes and
suppresses AI mechanisms and pathways. The end result of infection is thus a sustained ACUi that transforms into HYPi characterized by a storm
of cytokines and cells. Such HYPi, occurring in a PI milieu, gives rise tomore organ dysfunction, morbidity and death. Panel A and Panel B are
connected through a proposed exit strategy. Through this strategy, a PI milieu can be transformed into an AI milieu through adoption of amore
plant-based diet, in a matter of days/weeks, to try and shift the outcome of infection towardsmilder inflammation and better disease prognosis. It
is proposed that adoption of this exit strategy could provide a route out of the pandemic, at least until universal vaccination is feasible and effective
against all present and future strains of SARS-Cov-2.

transcellular and paracellular hyper-permeability facilitated by

infection of enterocytes.

Connections between obesity and inflammation, and
obesity and Covid-19

Evidence is emerging that obesity predisposes individuals to develop-

ing severeCovid-19, and to poorer prognosis upon contracting a SARS-

Cov-2 infection,[113,127–132] including amongst those who are young.

In the context of this paper and its focus on pre-existing CHRi in indi-

viduals, it must be noted that there is an intimate connection between

obesity and CHRi. Obesity gives rise to inflammation, and inflamma-

tion also gives rise to obesity;[133–135] the reason being that adipocytes

secretePI cytokines that promote further adipocyte growth, giving rise

to a feedback loop that leads to increase in CHRi once obesity sets in,

with involvement of the liver, and of the acute phase proteins, in this

feedback loop.[136] It seems likely that this is related to nutrition, diet

and lifestyle.

Thus, obesity could be considered yet another pre-existing con-

dition predisposing to severe Covid-19, when associated with CHRi,

like the many other chronic conditions such as hypertension, hyper-

glycemia, and certain forms of cancer that are associated with CHRi;

however, the key underlying condition would still remain the basal

CHRi in the gut and entire system. Our view is that systemic CHRi (S-

CHRi) must be considered the main pre-existing condition that predis-

poses an individual to severe Covid-19, because S-CHRi can remain

un-manifested and asymptomatic for years before it manifests as a

florid or detectable medical condition. All of the explicitly-present pre-

existingmedical conditions could thus just be the tip of the iceberg pre-

disposing individuals to severe Covid-19. CHRi could thus constitute

the entire bulk of this iceberg which remains hidden from view.
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Other recent relevant literature

A preprint of the very first version of this paper (revised thrice,

and now in its fourth edition, during consideration for pub-

lication in this journal) was uploaded on Research Gate (DOI:

10.13140/RG.2.2.17723.44323), concomitantly with the first submis-

sion, on May 16, 2020. At that point of time, there were only three

papers (e-published during April or May, 2020) that mentioned the

possibility of a link between diet and Covid-19, in passing.[137–140]

During the 13 months that have passed since, numerous other papers

have also noted connections between Covid-19 and diet, nutrition,

microbiomes, dysbiosis, immunity, or inflammation,[141–150] including

one paper that happened to cite the original preprint on Research

Gate.[151] However, none of these earlier, or subsequent, papers

explicitly holds chronic inflammation (CHRi) to be the cause of the

proposed rapid rise and slow abatement of acute inflammation (ACUi),

or the proposed spiralling of ACUi into hyper-inflammation (HYPI), as

proposed in this paper. Therefore, the mechanistic insights outlined in

this paper provide the first ‘‘end-to-end’’ explanationof the entire chain

of causality connecting: (i) dietary habits to microbiome constitutions;

(ii) microbiome constitutions to undetected gut CHRi and dysbiosis;

(iii) undetected gut CHRi and dysbiosis to undetected widespread

systemic CHRi; and (iv) undetected widespread systemic CHRi to

susceptibility to developing Covid-19, and especially to susceptibility

to severe disease in the form of HYPi, associated with thrombosis,

organ dysbiosis and death. This proposed chain of causality holds

CHRi driven by diet to be the main culprit and predisposing factor

(amongst those with no known pre-existing medical conditions) for

severe Covid-19.

A SUMMARY

Many humans host undetected chronic inflammation (CHRi), including

chronic gut and/or lung inflammation, or widespread systemic inflam-

mation, owing to their dietary and other habits, and also owing to

their living in stress- and pollutant-laden physical, or chemical envi-

ronments. This could predispose such humans to hyper-inflammation

(HYPi) in the form of cytokine storms. It could also predispose them

to organ dysbiosis and systemic organ HYPi associated with the leak-

age of materials (including SARS-Cov-2 itself) across tissue-blood bar-

riers, leading to body-wide cytokine storms and thrombosis preceding

any possible activation of an adaptive immune response to the virus.

CHRi could thus potentially be the main determinant of susceptibility

to severe Covid-19. CHRi could probably also be reduced through a

shift of diet to foods that actively promotemaintenance of a gutmicro-

biome dominated by bacteria that curb gut, lung and body-wide inflam-

mation, instead of promoting it. Records available with hospitals and

health ministries could help to explore further correlations between

diet and death, ormorbidity, in Covid-19, given the known connections

between diet, obesity and inflammation. Also, prospective controlled

studies could be conducted to verify the benefits of anti-inflammatory

(AI) diets and gut microbiomes in curbing HYPi associated with viruses

such as coronaviruses and influenza viruses. Notably, one such study

that supports the contentionsmade in this paper has already appeared

in the literature (150).
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