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Abstract

We propose that hyper-inflammation (HYPi) is a “runaway” consequence of acute
inflammation (ACUi) that arises more easily (and also abates less easily) in those who
host a pre-existing chronic inflammation (CHRi), because (i) most factors involved
in generating an ACUi to limit viral proliferation are already present when there is
an underlying CHRIi, and also because (ii) anti-inflammatory (Al) mechanisms for the
abatement of ACUi (following containment of viral proliferation) are suppressed and
desensitized where there is an underlying CHRI, with this causing the ACUi to spiral
into a HYPi. Stress, pollution, diet, and gut microbiomes (alterable in weeks through
dietary changes) have an intimate and bidirectional cause-effect relationship with
CHRI. We propose that avoidance of CHRi-promoting foods and adoption of CHRI-
suppressing foods could reduce susceptibility to HYPi, in Covid-19 and in other viral
diseases, such as influenza, which are characterized by episodic and unpredictable
HYPi.
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COVID-19: DESCRIPTORS AND FACTORS

Exposure to viruses is a fait accompli for much of the planet’s popula-
tion. With SARS-CoV-2, successive waves of infection by new mutants
and variants suggest that everyone is at risk of being exposed to a
greater or lesser degree, either sooner or later. It is important to iden-
tify those with the highest probability of developing severe disease,
in order to focus efforts at mitigation or prevention. This article dis-
cusses factors that might predispose individuals to developing severe
Covid-19. It argues that more attention must be paid to the possibility
of diet-derived chronic inflammation (CHRi) being the most important,
and fundamental, of all predisposing factors.

AFFECTING SUSCEPTIBILITY TO SEVERE DISEASE
Early descriptors

Early Covid-19 reports indicated the following: (a) pneumonia
is the most serious consequence of the disease;l] (b) infection
involves only respiratory epithelial cells rich in ACE2 membrane
receptors;[2] (c) infection causes severe symptoms mainly in the aged,
and those with serious medical conditions, but not in the young;3! and
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(d) establishment of infection leads to high morbidity, and a case
fatality rate (CFR) approaching 15%.[1]

Later descriptors

After the passage of some months, the above descriptors were sub-
stantially amended. Newer indicators indicated that a SARS-Cov-2
infection can: (i) fail to cause pneumonia;[4! (ii) be causative of severe,
varied and inexplicable forms of disease in the heart, kidney, or brain;4]
(iii) involve secondary lymphoid organs;15] (iv) cause severe disease in
young individuals;[¢! (v) cause hospitalization of individuals who have
no known, or identified, pre-existing health conditions, with over sixty
percent of those hospitalized falling in this category;”! (vi) be asymp-
tomatic, or mildly symptomatic;8! (vii) have a CFR in the low single
digits;[! (viii) involve thrombotic complications in the microvascula-
ture, associated with morbidity, or mortality;[m] (ix) affect black and
minority ethnicity (BAME) individuals more than others;! 11! (x) affect
men more than women;!12] (xi) cause symptoms akin to Kawasaki dis-
ease in children;[13! and (xii) cause severe and silent hypoxemia or
hypoxia in tissues, without any signs of classical pneumonia, 14! with
none of these factors achieving a hundred percent penetration within

any of the mentioned sub-populations.

Susceptibility

Besides factors such as age, ethnicity, sex/gender, and pre-existing con-
ditions, additional factors such as HLA antigen types,[15] levels of expo-
sure to the virus,[16] and overall immune status!17:18] appear to be
indicative in determining susceptibility to severe Covid-19.

Interventions

No intervention is conceivable in respect of genetics, ethnicity or gen-
der. A combination of mask-wearing, social distancing, and curfews
would appear to be mitigating the spreading of infection by control-
ling exposure. Vaccines [working on principles ranging from the use
of heat-inactivated virus (Bharat Biotech and Sinopharm) to use of
infection-competent but replication-deficient adenovirus-derived pro-
duction of spike protein in vivo (Oxford-Astra Zeneca, Johnson & John-
son, and Sputnik) to use of encapsulated mRNA and cell fusion-based
production of spike protein in vivo (Pfizer and Moderna)] appear to
hold promise in reducing morbidity and mortality. Anti-inflammatory
(Al) medication has become part of the protocol of treatment, in efforts

to reduce hyper-inflammation (HYPi).

Refinement of the susceptibility question

We do not yet understand what makes one person susceptible to HYPi,

but another asymptomatic. Since the majority of those infected appear

to remain asymptomatic, or mildly symptomatic,8! it could be useful to
identify those who are susceptible to severe disease, or death,[19] to
explore scope for further intervention at the level of individuals.

THE IMPORTANCE OF THE INNATE IMMUNE
SYSTEM

Two types of immune systems operate with every human being; these
being the innate, and adaptive, immune systems. The two act indepen-
dently but also cooperate, interlacing their cellular/molecular compo-

nents and functions.[20!

The adaptive immune system is too slow, and
suppressed by the virus

The adaptive immune system which gives rise to antibodies is slower
in responding, but more accurate and specific to pathogens, 17! taking
1-3 weeks to respond to new pathogens (or antigens) and > 1 week to
reactivate pre-existing immunity. It is thus useful for slowly-developing
diseases in which patients cannot die before antibodies are gener-
ated. With SARS-Cov-2, severe disease can develop within a week
of infection.[*] Thus, the adaptive immune system is good from the
viewpoint of vaccination, in those who have not yet been exposed,
as well as in those who have been exposed without serious conse-
quences, but it cannot help those who develop severe early disease.
Even more importantly, cytotoxic (CD8+) T cells and natural killer (NK)
cells are “exhausted” and non-optimal in efficacy during a SARS-Cov-
2 infection,[21:22] suggesting that the adaptive immune system is also
substantially suppressed by an infection.

A normally-functioning innate immune system limits
pathogen proliferation through acute inflammation

Unlike the adaptive immune system, the innate immune system is
faster in responding, but less specific to pathogens. It uses a multi-
tude of cell types, cytokines, chemokines, and organ- or tissue-derived
secretions to mount inflammation at sites of viral entry, to lower viral
loads and ensure survival of the individual until the adaptive immune

response can be mounted.[ 8!

A normally-functioning innate immune system
mounts only the necessary amount of acute
inflammation

In the initial innate response, neutrophils and macrophages happen to
prime subsequent responses from cytotoxic (CD8+) T cells and NK
cells, including via dendritic cells.[?8] The response is finely tuned, and
calibrated to generate the required level of inflammation in tissues

(e.g. skin, eyes, nostrils, mouth, respiratory tract, or gastro-intestinal
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tract) that first encounter the virus, through homeostasis between pro-
inflammatory (PI) and anti-inflammatory (Al) pathways/mechanisms
involving mutually-exclusive, occasionally-overlapping, cascades and
feedback loops of cells and cytokines engaged in competition for dom-
inance. The default state is a lack of inflammation. Acute inflammation
(ACUi) arises (and also abates) rapidly to destroy viruses. To facilitate
this, provisions exist to rapidly amplify or attenuate Pl and/or Al path-
ways, based on the system’s sensing of requirements and sensing of the
magnitude of the challenge.[2324] The balance of Pl and Al mechanisms
can be affected by constant stimulation, and/or suppression, of inflam-

mation.

A dysfunctional innate immune system displays
under-reactions or over-reactions

The innate response becomes dysfunctional in two ways, through dis-
balance of homeostasis, involving: (i) under-generation of ACUi, due
to drug-induced immune suppression,[25] primary (genetic) immune
deficiencies,[26] nutrient deficiencies,'27] or exposure to environmen-
tal toxins;[28] or (i) over-generation of ACUi, manifesting as HYPi,
with tissue/organ damage.[2%] The causes of the latter are not fully

understood.

Hyper-inflammation, cytokine storms and organ
dysfunction in Covid-19

The severity of Covid-19 owes to HYPi-based dysfunction of infected
tissues and organs,[39-371 known variously as a cytokine storm, a sec-
ondary hemophagocytic lymphohistocytosis (sHLH), or macrophage-
activation syndrome (MAS). Cytokine storms result from the release
of certain cytokines due to infections, autoimmune diseases, or medi-
cations. In Covid-19, cytokine storms occur in virus-infected tissues, to
cause HYPi.[39] |t is not yet clear what causes such storms to arise. This
paper proposes an explanation.

The puzzle: Is virus-induced hyper-inflammation
triggered mainly when there is a certain underlying
condition?

The questions at this point are the following: (1) Is HYPi entirely caused
by the qualities of the virus (i.e. the quality of the seed), or are there
some underlying factors that are necessary to promote its occurrence
(i.e. the qualities of the soil), independent of whether such factors
fall within the category of known pre-existing medical conditions, and
especially with regard to whether such factors might constitute previ-
ously unsuspected, or undetected, conditions? (II) What mechanisms, if
any, connect HYPi with such factors? (I11) How does the virus reach tis-
sues and organs outside the lung, or gut, to cause HYPi in other parts of
the body?

PROPOSAL: CHRONIC INFLAMMATION (CHRi)
CAUSES VIRUS-TRIGGERED ACUTE
INFLAMMATION (ACUi) TO SPIRAL INTO
HYPER-INFLAMMATION (HYPi)

Feedback loops cause CHRi to promote HYPi by
compounding with ACUi

Upsetting of the PI-Al balance can involve long-term dominance of
one, and long-term suppression of the other, allowing the former to
enter “unchallenged” feedback-mode operation.[2324] Large feedback
loops promoting a Pl milieu in CHRi could potentially facilitate run-
away HYPi, during which smaller feedback loops involving thrombo-
sis play a role. It is known that inflammation begets thrombosis.[38!
It is also known that thrombosis begets inflammation.[38] Thus, feed-
back can create a Pl milieu in which Al feedback loops fail to suppress
ongoing inflammation.[38:3%1 Acute inflammation (ACUi) due to viral
infection could cause Pl feedback loops (already operating on over-
drive) to overpower Al feedback loops, and thus precipitate hyper-
inflammation (HYPi). Ordinarily, inflammation is of two types: acute
(ACUi) and chronic (CHRi).[40] ACUi arises and abates in days in
response to a transient stimulus. CHRI arises and abates much more
slowly. The two share many features, however, as well as common cell
types and cytokines. A small array of 10 cytokines generates ACUi (IL-
1, IL-6, IL-8, IL-11, IL-16, IL-17, G-CSF, TNF-alpha, Eotaxin, GM-CSF).
Out of these, a total of 7 cytokines are shared (IL-1, IL-6, IL-11, IL-
17, TNF-alpha, Eotaxin and GM-CSF) with the much larger array of
21 cytokines that ordinarily sustains CHRi (IL-1, IL-2, IL-3, IL-4, IL-
5, IL-6, IL-7, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IL-17, TNF-
alpha, TNF-beta, INF-gamma, Eotaxin, TGF-beta, and GM-CSF). Due
to this overlap between cytokines used by ACUi and CHRi, ACUi can
potentially arise in a body already beset by CHRI, through the addi-
tional production of only 3 cytokines (IL-8, IL-16, and G-CSF). Thus,
pre-existing CHRi could be a platform (or launching pad) that allows
ACUi to be launched rapidly, and also fail to abate rapidly (since Al
mechanisms are suppressed in CHRi). The feedback between inflam-
mation and thrombosis(38:39! further accelerates the ability of this pro-
cess to enter “runaway” mode. We propose that this is the basis of
HYPi.

Further, we draw attention to the acute phase proteins (APPs), the
most well-known of which are C-reactive protein (CRP), serum amy-
loid P (SAP), serum amyloid A (SAA), and haptoglobin (Hp). APPs are
diagnostic markers of ACUi which also help to coordinate the immune
response through both Pl and Al functions. Although the term “APP” is
associated with ACUi, many APPs are also associated with CHRI. This
causes APPs to constitute an additional group of proteins (after the
cytokines) that contain members common to ACUi and CHRi, with PI
and Al functions, and with the potential to affect the overall balance,
in inflammation.[41] Thus, there is a possibility of the joint involvement
of the PI/Al balance of cytokines and APPs in cooperatively launch-
ing an ACUi into a HYPi, when there is an underlying, long-standing
CHRIi.
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MICROBES THAT THRIVE ON CERTAIN FOODS
CAUSE CHRONIC GUT AND SYSTEMIC
INFLAMMATION

Gut microbiomes promoted by certain foods/drinks
are Pl while those promoted by other foods/drinks
are Al

Connections between diet, gut microbiomes and inflammation are
described in several thousand publications. Microbes inhabit animal
and human guts, and their proliferation and abundance are profoundly
influenced by diet.[42-44] Plant-based food promotes growth of
microbes that stimulate Al mechanisms,!45-33] particularly when one
avoids foods that contain an excess of phytates, lectins, oxalates and
other substances with possible adverse effects. Red meat-based food
promotes growth of microbes that stimulate Pl mechanisms,[54-81]
especially when consumed in the context of fried food and nitro-
sylated compounds, and to the exclusion of all plant-based and
green/leafy accompaniments and salads. Alcohol promotes gut and
liver inflammation.[82-197] Gluten leads to chronic inflammation of
both celiac and non-celiac varieties,[198.109] with the latter affecting
a higher fraction of the US population (6%) than the former (1%).[110!
High intake of sugar leads to a Pl gut microbiome, 11! although
disagreement remains about whether fructose is more Pl in character
than either glucose, or sucrose.112] Certain polyunsaturated fats
stimulate Pl mechanisms, whereas certain saturated fats stimulate Al
mechanisms; however, it must be noted that some fats, such as the
omega-3 fatty acids (which are polyunsaturated) stimulate Al mecha-
nisms, and that some animal-derived long-chain fatty acids (which are
saturated) stimulate Pl mechanisms.113 This suggests that attention is
required to be paid both to the specific types of fats that are consumed
in modern lifestyles, and diet, and to individual fats and their specific
Al- or Pl-related properties. Pl foods cause chronic gut dysbiosis asso-
ciated with increased gut permeability, when their inclusion in the diet
is not balanced by (1) a suitable amount of Al food, with the balance of
diet weighing-in on the side of such Al foods, and (2) lifestyle factors
such as exercise. Notably, anxiety also contributes to increased intesti-
nal permeability, through a mast cell-dependent mechanism activated
by psychological stress.114115> CHRi caused by any of the above factors
can remain undetected for years, or progress to conditions such as
irritable bowel syndrome, inflammatory bowel disease, and leaky gut
syndrome, or manifest as cardiovascular disease, diabetes mellitus,
non-alcoholic fatty liver disease, certain forms of cancer, chronic
kidney disease, or autoimmune and neurodegenerative disorders.116

It may be pertinent to mention here that, theoretically-speaking,
sub-acute and undetected CHRi in the gut could also result from mild
systemic and gut allergic responses to milk-lactose, milk-protein, eggs,
soyabean, seafood, or other allergenic foods. However, in most cases,
these substances cause severe and identifiable allergies (rather than
sub-acute and chronic reactions). Since acute food allergies are easily
identified, and allergy-causing foods are voluntarily avoided by those
who display allergies, such allergic inflammation, or ALLi (which con-
stitutes a fourth class of inflammation; beyond CHRi, ACUi and HYPi)

is unlikely to be relevant in the context of an individual’s exposure to
SARS-Cov-2.

Therefore, if one were to discount for florid food allergies, could
silent CHRi driven by food then turn out to be the fundamental under-
lying pre-existing condition that predisposes humans to severe Covid-
197 If this were the case, florid medical conditions (due to CHRi) could
be the proverbial tip of the iceberg, while undetected, asymptomatic
gut/systemic CHRi could make up the bulk of the iceberg. Could atten-
tion to diet influence the severity of Covid-19, if contracted, or even
be useful as a preventative measure? There is evidence that a change
of diet can lead to a rapid alteration of the constitutions of gut micro-
biomes in a matter of days/weeks.[43!]

Perhaps a change of diet, from a Pl diet to an Al diet (characterized
by a greater inclusion of CHRi-suppressing Al foods, and avoidance of
CHRIi-promoting Pl foods) could work to rapidly reduce an individual’s
susceptibility to developing severe Covid-19, following exposure to the
virus, or infection. If a change of diet could prevent HYPi, the body
could run its normal course of an initial innate immune response (in the
form of an ACUi, developing rapidly and also abating rapidly) followed
by an adaptive immune response (i.e. development of antibodies). This

possibility is summarized in Figure 1

Pro-inflammatory gut microbiota compromise
tissue-blood barriers to promote body-wide
dissemination of endotoxin, cytokines and viruses

Pl microbes cause breaching of mucosal/cellular barriers separating
the gut’s lumen from the vasculature infiltrating its wall.[29] CHRi
elicits gut leakiness.[ 1171 Gut leakiness too elicits CHRi.[118] Proteases
degrade tight junctions between cells in the gut’s lining, once colonic
mucosa is compromised by a Pl milieu,[119! with Pl cytokines further
increasing permeability, and dysbiosis, leading to circulation of bacte-
rial lipopolysachharide (LPS) or endotoxin that further dysregulates
the immune response. Gut dybiosis is associated with altered abun-
dances of short-chain fatty acids (especially butyrate) that seal the gut
and dampen immune responses. Many diseases predisposing to covid-
19 severity/fatality are associated with decreased butyrate (decreased
alpha diversity),!112°1 and increased transcellular and paracellular
hyper-permeability.!121] This suggests that it is critical for butyrate-
induced sealing to keep pace with breaching of the gut-blood barrier,
to stop episodic leakage from the digestive system into the circulatory
system. A Pl milieu created and maintained in the gut prevents such
regeneration, and helps to maintain a Pl milieu in the entire body (i.e,.
helps to maintain a systemic state of CHRi). This leads to breaching
of the tissue-blood barriers in various other organs (e.g. lung, liver,
kidney, or brain), offering an explanation for how SARS-Cov-2 reaches
other tissues, since SARS-CoV-2 anyway reaches the gut through the
alimentary canal, causing viral RNA to be present in fecal samples.[122]
SARS-Cov-2 infects gut enterocytes,!23] and causes alterations
in gut microbiota in Covid-19 patients.[124125] Therefore, guts
that host CHRi due to diet can better host SARS-CoV-2 and leak

it to other tissues through formation of giant syncitia,[?26! and
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FIGURE 1

Proposed progression of events relating diet to disease outcome. Panel A. The top half of this panel shows that a plant-based diet

promotes an anti-inflammatory (Al) feedback cycle, and leads to the setting up of an Al milieu that is then associated with a lack of any gut and/or
systemic chronic inflammation (CHRi). The bottom half of the same panel shows that there is a typical (rather than an over-the-top) virus-triggered
acute inflammation (ACUi), upon infection, which arises with difficulty but abates with ease because it occurs in an overall Al milieu. The end result
of infection is thus a mild overall inflammatory outcome, with no hyper-inflammation (HYPi) seen. Panel B. The top half of this panel shows that a
diet based on refined grain, red meat, alcohol and sugars, promotes a pro-inflammatory (PI) feedback cycle, and leads to the setting up of a Pl milieu
that is then associated with gut and systemic CHRI. This predisposes individuals to gut dysbiosis and leakiness. The bottom half of the same panel
shows that there is thus an over-the-top, and out-of-control, virus-triggered ACUi, upon viral infection, that both occurs more easily and abates
with more difficulty, because it occurs in an overall Pl milieu that is characterized by a pre-existing chronic inflammation which desensitizes and
suppresses Al mechanisms and pathways. The end result of infection is thus a sustained ACUi that transforms into HYPi characterized by a storm
of cytokines and cells. Such HYPi, occurring in a Pl milieu, gives rise to more organ dysfunction, morbidity and death. Panel A and Panel B are
connected through a proposed exit strategy. Through this strategy, a Pl milieu can be transformed into an Al milieu through adoption of a more
plant-based diet, in a matter of days/weeks, to try and shift the outcome of infection towards milder inflammation and better disease prognosis. It
is proposed that adoption of this exit strategy could provide a route out of the pandemic, at least until universal vaccination is feasible and effective

against all present and future strains of SARS-Cov-2.

transcellular and paracellular hyper-permeability facilitated by
infection of enterocytes.

Connections between obesity and inflammation, and
obesity and Covid-19

Evidence is emerging that obesity predisposes individuals to develop-
ing severe Covid-19, and to poorer prognosis upon contracting a SARS-
Cov-2 infection,[113127-132] jncluding amongst those who are young.
In the context of this paper and its focus on pre-existing CHRi in indi-
viduals, it must be noted that there is an intimate connection between
obesity and CHRI. Obesity gives rise to inflammation, and inflamma-
tion also gives rise to obesity;[133-135] the reason being that adipocytes
secrete Pl cytokines that promote further adipocyte growth, giving rise

to a feedback loop that leads to increase in CHRi once obesity sets in,

with involvement of the liver, and of the acute phase proteins, in this
feedback loop.!136] It seems likely that this is related to nutrition, diet
and lifestyle.

Thus, obesity could be considered yet another pre-existing con-
dition predisposing to severe Covid-19, when associated with CHRi,
like the many other chronic conditions such as hypertension, hyper-
glycemia, and certain forms of cancer that are associated with CHRIi;
however, the key underlying condition would still remain the basal
CHRi in the gut and entire system. Our view is that systemic CHRi (S-
CHRIi) must be considered the main pre-existing condition that predis-
poses an individual to severe Covid-19, because S-CHRi can remain
un-manifested and asymptomatic for years before it manifests as a
florid or detectable medical condition. All of the explicitly-present pre-
existing medical conditions could thus just be the tip of the iceberg pre-
disposing individuals to severe Covid-19. CHRIi could thus constitute

the entire bulk of this iceberg which remains hidden from view.
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Other recent relevant literature

A preprint of the very first version of this paper (revised thrice,
and now in its fourth edition, during consideration for pub-
lication in this journal) was uploaded on Research Gate (DOI:
10.13140/RG.2.2.17723.44323), concomitantly with the first submis-
sion, on May 16, 2020. At that point of time, there were only three
papers (e-published during April or May, 2020) that mentioned the
possibility of a link between diet and Covid-19, in passing.!137-140]
During the 13 months that have passed since, numerous other papers
have also noted connections between Covid-19 and diet, nutrition,
microbiomes, dysbiosis, immunity, or inflammation,[141-1501 including
one paper that happened to cite the original preprint on Research
Gate.[151] However, none of these earlier, or subsequent, papers
explicitly holds chronic inflammation (CHRi) to be the cause of the
proposed rapid rise and slow abatement of acute inflammation (ACUi),
or the proposed spiralling of ACUi into hyper-inflammation (HYPI), as
proposed in this paper. Therefore, the mechanistic insights outlined in
this paper provide the first “end-to-end” explanation of the entire chain
of causality connecting: (i) dietary habits to microbiome constitutions;
(ii) microbiome constitutions to undetected gut CHRi and dysbiosis;
(iii) undetected gut CHRi and dysbiosis to undetected widespread
systemic CHRi; and (iv) undetected widespread systemic CHRi to
susceptibility to developing Covid-19, and especially to susceptibility
to severe disease in the form of HYPIi, associated with thrombosis,
organ dysbiosis and death. This proposed chain of causality holds
CHRIi driven by diet to be the main culprit and predisposing factor
(amongst those with no known pre-existing medical conditions) for
severe Covid-19.

A SUMMARY

Many humans host undetected chronic inflammation (CHRI), including
chronic gut and/or lung inflammation, or widespread systemic inflam-
mation, owing to their dietary and other habits, and also owing to
their living in stress- and pollutant-laden physical, or chemical envi-
ronments. This could predispose such humans to hyper-inflammation
(HYPi) in the form of cytokine storms. It could also predispose them
to organ dysbiosis and systemic organ HYPi associated with the leak-
age of materials (including SARS-Cov-2 itself) across tissue-blood bar-
riers, leading to body-wide cytokine storms and thrombosis preceding
any possible activation of an adaptive immune response to the virus.
CHRIi could thus potentially be the main determinant of susceptibility
to severe Covid-19. CHRI could probably also be reduced through a
shift of diet to foods that actively promote maintenance of a gut micro-
biome dominated by bacteria that curb gut, lung and body-wide inflam-
mation, instead of promoting it. Records available with hospitals and
health ministries could help to explore further correlations between
diet and death, or morbidity, in Covid-19, given the known connections
between diet, obesity and inflammation. Also, prospective controlled

studies could be conducted to verify the benefits of anti-inflammatory

(Al) diets and gut microbiomes in curbing HYPi associated with viruses
such as coronaviruses and influenza viruses. Notably, one such study
that supports the contentions made in this paper has already appeared
in the literature (150).
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