

Does chronic inflammation cause acute inflammation to spiral into hyper-inflammation in a manner modulated by diet and the gut microbiome, in severe Covid-19?

Manni Luthra-Guptasarma¹ | Purnananda Guptasarma²

¹ Department of Immunopathology,
Postgraduate Institute of Medical Education
and Research (PGIMER), Chandigarh, India

² Centre for Protein Science, Design and
Engineering, Department of Biological
Sciences, Indian Institute of Science Education
and Research (IISER) Mohali, SAS Nagar,
Punjab, India

Correspondence

Manni Luthra-Guptasarma, Department of
Immunopathology, Postgraduate Institute of
Medical Education and Research (PGIMER),
Sector-12, Chandigarh 160012, India.

Email: guptasarma.manni@pgimer.edu.in;
mguptasarma@yahoo.com

Purnananda Guptasarma, Department of
Biological Sciences, Indian Institute of Science
Education and Research (IISER) Mohali, Sector-
81, SAS Nagar, Punjab 140306, India.

Email: guptasarma@iisermohali.ac.in; gup-
tasarma@yahoo.com

Original submission and uploading of Research
Gate Preprint on May 16, 2020

DOI: 10.13140/RG.2.2.17723.44323

Abstract

We propose that hyper-inflammation (HYPi) is a “runaway” consequence of acute inflammation (ACUi) that arises more easily (and also abates less easily) in those who host a pre-existing chronic inflammation (CHRi), because (i) most factors involved in generating an ACUi to limit viral proliferation are already present when there is an underlying CHRi, and also because (ii) anti-inflammatory (AI) mechanisms for the abatement of ACUi (following containment of viral proliferation) are suppressed and desensitized where there is an underlying CHRi, with this causing the ACUi to spiral into a HYPi. Stress, pollution, diet, and gut microbiomes (alterable in weeks through dietary changes) have an intimate and bidirectional cause-effect relationship with CHRi. We propose that avoidance of CHRi-promoting foods and adoption of CHRi-suppressing foods could reduce susceptibility to HYPi, in Covid-19 and in other viral diseases, such as influenza, which are characterized by episodic and unpredictable HYPi.

KEYWORDS

Acute inflammation, Chronic inflammation, Covid-19, Cytokine storm, Diet, Gut inflammation, Gut microbiome, Hyperinflammation, Systemic inflammation

Exposure to viruses is a fait accompli for much of the planet's population. With SARS-CoV-2, successive waves of infection by new mutants and variants suggest that everyone is at risk of being exposed to a greater or lesser degree, either sooner or later. It is important to identify those with the highest probability of developing severe disease, in order to focus efforts at mitigation or prevention. This article discusses factors that might predispose individuals to developing severe Covid-19. It argues that more attention must be paid to the possibility of diet-derived chronic inflammation (CHRi) being the most important, and fundamental, of all predisposing factors.

COVID-19: DESCRIPTORS AND FACTORS AFFECTING SUSCEPTIBILITY TO SEVERE DISEASE

Early descriptors

Early Covid-19 reports indicated the following: (a) pneumonia is the most serious consequence of the disease;^[1] (b) infection involves only respiratory epithelial cells rich in ACE2 membrane receptors;^[2] (c) infection causes severe symptoms mainly in the aged, and those with serious medical conditions, but not in the young;^[3] and

(d) establishment of infection leads to high morbidity, and a case fatality rate (CFR) approaching 15%.^[1]

Later descriptors

After the passage of some months, the above descriptors were substantially amended. Newer indicators indicated that a SARS-CoV-2 infection can: (i) fail to cause pneumonia;^[4] (ii) be causative of severe, varied and inexplicable forms of disease in the heart, kidney, or brain;^[4] (iii) involve secondary lymphoid organs;^[5] (iv) cause severe disease in young individuals;^[6] (v) cause hospitalization of individuals who have no known, or identified, pre-existing health conditions, with over sixty percent of those hospitalized falling in this category;^[7] (vi) be asymptomatic, or mildly symptomatic;^[8] (vii) have a CFR in the low single digits;^[9] (viii) involve thrombotic complications in the microvasculature, associated with morbidity, or mortality;^[10] (ix) affect black and minority ethnicity (BAME) individuals more than others;^[11] (x) affect men more than women;^[12] (xi) cause symptoms akin to Kawasaki disease in children;^[13] and (xii) cause severe and silent hypoxemia or hypoxia in tissues, without any signs of classical pneumonia,^[14] with none of these factors achieving a hundred percent penetration within any of the mentioned sub-populations.

Susceptibility

Besides factors such as age, ethnicity, sex/gender, and pre-existing conditions, additional factors such as HLA antigen types,^[15] levels of exposure to the virus,^[16] and overall immune status^[17,18] appear to be indicative in determining susceptibility to severe Covid-19.

Interventions

No intervention is conceivable in respect of genetics, ethnicity or gender. A combination of mask-wearing, social distancing, and curfews would appear to be mitigating the spreading of infection by controlling exposure. Vaccines [working on principles ranging from the use of heat-inactivated virus (Bharat Biotech and Sinopharm) to use of infection-competent but replication-deficient adenovirus-derived production of spike protein in vivo (Oxford-Astra Zeneca, Johnson & Johnson, and Sputnik) to use of encapsulated mRNA and cell fusion-based production of spike protein in vivo (Pfizer and Moderna)] appear to hold promise in reducing morbidity and mortality. Anti-inflammatory (AI) medication has become part of the protocol of treatment, in efforts to reduce hyper-inflammation (HYPI).

Refinement of the susceptibility question

We do not yet understand what makes one person susceptible to HYPI, but another asymptomatic. Since the majority of those infected appear

to remain asymptomatic, or mildly symptomatic,^[8] it could be useful to identify those who are susceptible to severe disease, or death,^[19] to explore scope for further intervention at the level of individuals.

THE IMPORTANCE OF THE INNATE IMMUNE SYSTEM

Two types of immune systems operate with every human being; these being the innate, and adaptive, immune systems. The two act independently but also cooperate, interlacing their cellular/molecular components and functions.^[20]

The adaptive immune system is too slow, and suppressed by the virus

The adaptive immune system which gives rise to antibodies is slower in responding, but more accurate and specific to pathogens,^[17] taking 1–3 weeks to respond to new pathogens (or antigens) and > 1 week to reactivate pre-existing immunity. It is thus useful for slowly-developing diseases in which patients cannot die before antibodies are generated. With SARS-CoV-2, severe disease can develop within a week of infection.^[4] Thus, the adaptive immune system is good from the viewpoint of vaccination, in those who have not yet been exposed, as well as in those who have been exposed without serious consequences, but it cannot help those who develop severe early disease. Even more importantly, cytotoxic (CD8+) T cells and natural killer (NK) cells are “exhausted” and non-optimal in efficacy during a SARS-CoV-2 infection,^[21,22] suggesting that the adaptive immune system is also substantially suppressed by an infection.

A normally-functioning innate immune system limits pathogen proliferation through acute inflammation

Unlike the adaptive immune system, the innate immune system is faster in responding, but less specific to pathogens. It uses a multitude of cell types, cytokines, chemokines, and organ- or tissue-derived secretions to mount inflammation at sites of viral entry, to lower viral loads and ensure survival of the individual until the adaptive immune response can be mounted.^[18]

A normally-functioning innate immune system mounts only the necessary amount of acute inflammation

In the initial innate response, neutrophils and macrophages happen to prime subsequent responses from cytotoxic (CD8+) T cells and NK cells, including via dendritic cells.^[18] The response is finely tuned, and calibrated to generate the required level of inflammation in tissues (e.g. skin, eyes, nostrils, mouth, respiratory tract, or gastro-intestinal

tract) that first encounter the virus, through homeostasis between pro-inflammatory (PI) and anti-inflammatory (AI) pathways/mechanisms involving mutually-exclusive, occasionally-overlapping, cascades and feedback loops of cells and cytokines engaged in competition for dominance. The default state is a lack of inflammation. Acute inflammation (ACUi) arises (and also abates) rapidly to destroy viruses. To facilitate this, provisions exist to rapidly amplify or attenuate PI and/or AI pathways, based on the system's sensing of requirements and sensing of the magnitude of the challenge.^[23,24] The balance of PI and AI mechanisms can be affected by constant stimulation, and/or suppression, of inflammation.

A dysfunctional innate immune system displays under-reactions or over-reactions

The innate response becomes dysfunctional in two ways, through disbalance of homeostasis, involving: (i) under-generation of ACUi, due to drug-induced immune suppression,^[25] primary (genetic) immune deficiencies,^[26] nutrient deficiencies,^[27] or exposure to environmental toxins;^[28] or (ii) over-generation of ACUi, manifesting as HYPi, with tissue/organ damage.^[29] The causes of the latter are not fully understood.

Hyper-inflammation, cytokine storms and organ dysfunction in Covid-19

The severity of Covid-19 owes to HYPi-based dysfunction of infected tissues and organs,^[30-37] known variously as a cytokine storm, a secondary hemophagocytic lymphohistiocytosis (sHLH), or macrophage-activation syndrome (MAS). Cytokine storms result from the release of certain cytokines due to infections, autoimmune diseases, or medications. In Covid-19, cytokine storms occur in virus-infected tissues, to cause HYPi.^[30] It is not yet clear what causes such storms to arise. This paper proposes an explanation.

The puzzle: Is virus-induced hyper-inflammation triggered mainly when there is a certain underlying condition?

The questions at this point are the following: (I) Is HYPi entirely caused by the qualities of the virus (i.e. the quality of the seed), or are there some underlying factors that are necessary to promote its occurrence (i.e. the qualities of the soil), independent of whether such factors fall within the category of known pre-existing medical conditions, and especially with regard to whether such factors might constitute previously unsuspected, or undetected, conditions? (II) What mechanisms, if any, connect HYPi with such factors? (III) How does the virus reach tissues and organs outside the lung, or gut, to cause HYPi in other parts of the body?

PROPOSAL: CHRONIC INFLAMMATION (CHRi) CAUSES VIRUS-TRIGGERED ACUTE INFLAMMATION (ACUi) TO SPIRAL INTO HYPER-INFLAMMATION (HYPi)

Feedback loops cause CHRi to promote HYPi by compounding with ACUi

Upsetting of the PI-AI balance can involve long-term dominance of one, and long-term suppression of the other, allowing the former to enter "unchallenged" feedback-mode operation.^[23,24] Large feedback loops promoting a PI milieu in CHRi could potentially facilitate runaway HYPi, during which smaller feedback loops involving thrombosis play a role. It is known that inflammation begets thrombosis.^[38] It is also known that thrombosis begets inflammation.^[38] Thus, feedback can create a PI milieu in which AI feedback loops fail to suppress ongoing inflammation.^[38,39] Acute inflammation (ACUi) due to viral infection could cause PI feedback loops (already operating on over-drive) to overpower AI feedback loops, and thus precipitate hyper-inflammation (HYPi). Ordinarily, inflammation is of two types: acute (ACUi) and chronic (CHRi).^[40] ACUi arises and abates in days in response to a transient stimulus. CHRi arises and abates much more slowly. The two share many features, however, as well as common cell types and cytokines. A small array of 10 cytokines generates ACUi (IL-1, IL-6, IL-8, IL-11, IL-16, IL-17, G-CSF, TNF-alpha, Eotaxin, GM-CSF). Out of these, a total of 7 cytokines are shared (IL-1, IL-6, IL-11, IL-17, TNF-alpha, Eotaxin and GM-CSF) with the much larger array of 21 cytokines that ordinarily sustains CHRi (IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IL-17, TNF-alpha, TNF-beta, INF-gamma, Eotaxin, TGF-beta, and GM-CSF). Due to this overlap between cytokines used by ACUi and CHRi, ACUi can potentially arise in a body already beset by CHRi, through the additional production of only 3 cytokines (IL-8, IL-16, and G-CSF). Thus, pre-existing CHRi could be a platform (or launching pad) that allows ACUi to be launched rapidly, and also fail to abate rapidly (since AI mechanisms are suppressed in CHRi). The feedback between inflammation and thrombosis^[38,39] further accelerates the ability of this process to enter "runaway" mode. We propose that this is the basis of HYPi.

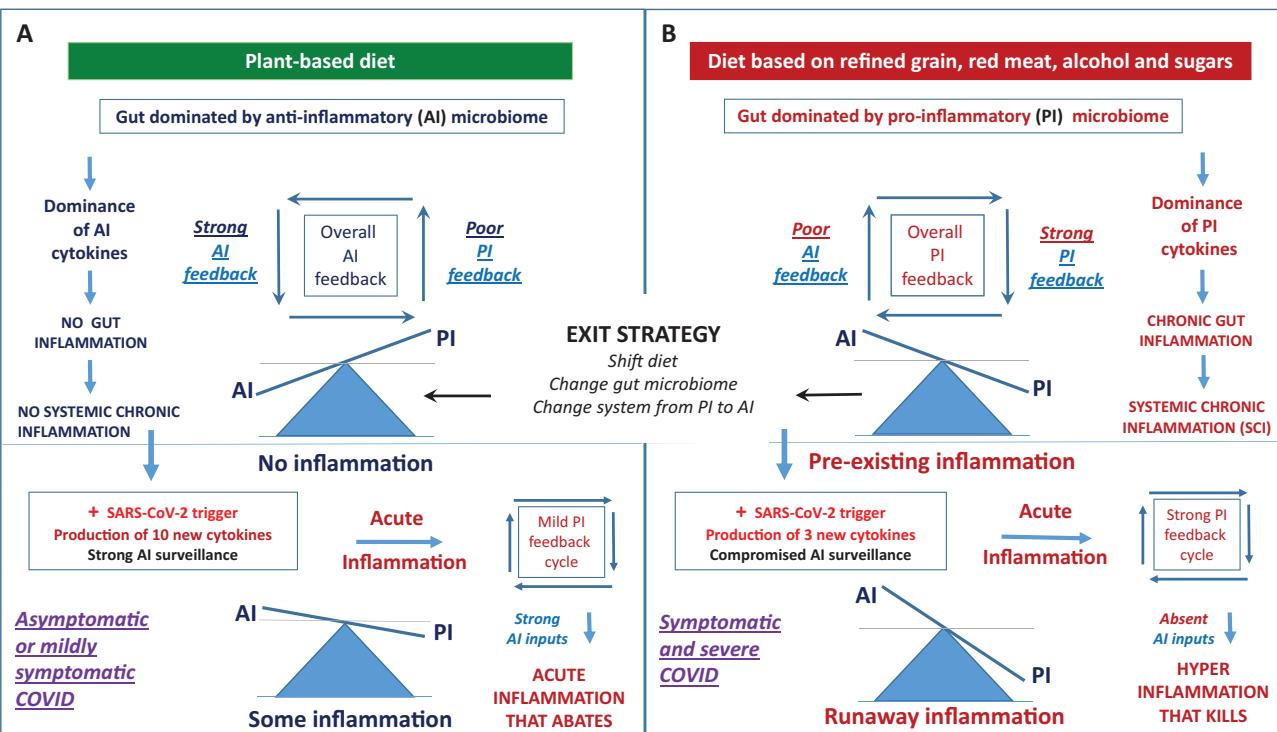
Further, we draw attention to the acute phase proteins (APPs), the most well-known of which are C-reactive protein (CRP), serum amyloid P (SAP), serum amyloid A (SAA), and haptoglobin (Hp). APPs are diagnostic markers of ACUi which also help to coordinate the immune response through both PI and AI functions. Although the term "APP" is associated with ACUi, many APPs are also associated with CHRi. This causes APPs to constitute an additional group of proteins (after the cytokines) that contain members common to ACUi and CHRi, with PI and AI functions, and with the potential to affect the overall balance, in inflammation.^[41] Thus, there is a possibility of the joint involvement of the PI/AI balance of cytokines and APPs in cooperatively launching an ACUi into a HYPi, when there is an underlying, long-standing CHRi.

MICROBES THAT THRIVE ON CERTAIN FOODS CAUSE CHRONIC GUT AND SYSTEMIC INFLAMMATION

Gut microbiomes promoted by certain foods/drinks are PI while those promoted by other foods/drinks are AI

Connections between diet, gut microbiomes and inflammation are described in several thousand publications. Microbes inhabit animal and human guts, and their proliferation and abundance are profoundly influenced by diet.^[42-44] Plant-based food promotes growth of microbes that stimulate AI mechanisms,^[45-53] particularly when one avoids foods that contain an excess of phytates, lectins, oxalates and other substances with possible adverse effects. Red meat-based food promotes growth of microbes that stimulate PI mechanisms,^[54-81] especially when consumed in the context of fried food and nitrosylated compounds, and to the exclusion of all plant-based and green/leafy accompaniments and salads. Alcohol promotes gut and liver inflammation.^[82-107] Gluten leads to chronic inflammation of both celiac and non-celiac varieties,^[108,109] with the latter affecting a higher fraction of the US population (6%) than the former (1%).^[110] High intake of sugar leads to a PI gut microbiome,^[111] although disagreement remains about whether fructose is more PI in character than either glucose, or sucrose.^[112] Certain polyunsaturated fats stimulate PI mechanisms, whereas certain saturated fats stimulate AI mechanisms; however, it must be noted that some fats, such as the omega-3 fatty acids (which are polyunsaturated) stimulate AI mechanisms, and that some animal-derived long-chain fatty acids (which are saturated) stimulate PI mechanisms.^[113] This suggests that attention is required to be paid both to the specific types of fats that are consumed in modern lifestyles, and diet, and to individual fats and their specific AI- or PI-related properties. PI foods cause chronic gut dysbiosis associated with increased gut permeability, when their inclusion in the diet is not balanced by (1) a suitable amount of AI food, with the balance of diet weighing-in on the side of such AI foods, and (2) lifestyle factors such as exercise. Notably, anxiety also contributes to increased intestinal permeability, through a mast cell-dependent mechanism activated by psychological stress.^[114,115] CHRI caused by any of the above factors can remain undetected for years, or progress to conditions such as irritable bowel syndrome, inflammatory bowel disease, and leaky gut syndrome, or manifest as cardiovascular disease, diabetes mellitus, non-alcoholic fatty liver disease, certain forms of cancer, chronic kidney disease, or autoimmune and neurodegenerative disorders.^[116]

It may be pertinent to mention here that, theoretically-speaking, sub-acute and undetected CHRI in the gut could also result from mild systemic and gut allergic responses to milk-lactose, milk-protein, eggs, soyabean, seafood, or other allergenic foods. However, in most cases, these substances cause severe and identifiable allergies (rather than sub-acute and chronic reactions). Since acute food allergies are easily identified, and allergy-causing foods are voluntarily avoided by those who display allergies, such allergic inflammation, or ALLi (which constitutes a fourth class of inflammation; beyond CHRI, ACUi and HYPi)


is unlikely to be relevant in the context of an individual's exposure to SARS-Cov-2.

Therefore, if one were to discount for florid food allergies, could silent CHRI driven by food then turn out to be the fundamental underlying pre-existing condition that predisposes humans to severe Covid-19? If this were the case, florid medical conditions (due to CHRI) could be the proverbial tip of the iceberg, while undetected, asymptomatic gut/systemic CHRI could make up the bulk of the iceberg. Could attention to diet influence the severity of Covid-19, if contracted, or even be useful as a preventative measure? There is evidence that a change of diet can lead to a rapid alteration of the constitutions of gut microbiomes in a matter of days/weeks.^[43]

Perhaps a change of diet, from a PI diet to an AI diet (characterized by a greater inclusion of CHRI-suppressing AI foods, and avoidance of CHRI-promoting PI foods) could work to rapidly reduce an individual's susceptibility to developing severe Covid-19, following exposure to the virus, or infection. If a change of diet could prevent HYPi, the body could run its normal course of an initial innate immune response (in the form of an ACUi, developing rapidly and also abating rapidly) followed by an adaptive immune response (i.e. development of antibodies). This possibility is summarized in Figure 1

Pro-inflammatory gut microbiota compromise tissue-blood barriers to promote body-wide dissemination of endotoxin, cytokines and viruses

PI microbes cause breaching of mucosal/cellular barriers separating the gut's lumen from the vasculature infiltrating its wall.^[29] CHRI elicits gut leakiness.^[117] Gut leakiness too elicits CHRI.^[118] Proteases degrade tight junctions between cells in the gut's lining, once colonic mucosa is compromised by a PI milieu,^[119] with PI cytokines further increasing permeability, and dysbiosis, leading to circulation of bacterial lipopolysaccharide (LPS) or endotoxin that further dysregulates the immune response. Gut dysbiosis is associated with altered abundances of short-chain fatty acids (especially butyrate) that seal the gut and dampen immune responses. Many diseases predisposing to covid-19 severity/fatality are associated with decreased butyrate (decreased alpha diversity),^[120] and increased transcellular and paracellular hyper-permeability.^[121] This suggests that it is critical for butyrate-induced sealing to keep pace with breaching of the gut-blood barrier, to stop episodic leakage from the digestive system into the circulatory system. A PI milieu created and maintained in the gut prevents such regeneration, and helps to maintain a PI milieu in the entire body (i.e., helps to maintain a systemic state of CHRI). This leads to breaching of the tissue-blood barriers in various other organs (e.g. lung, liver, kidney, or brain), offering an explanation for how SARS-CoV-2 reaches other tissues, since SARS-CoV-2 anyway reaches the gut through the alimentary canal, causing viral RNA to be present in fecal samples.^[122] SARS-CoV-2 infects gut enterocytes,^[123] and causes alterations in gut microbiota in Covid-19 patients.^[124,125] Therefore, guts that host CHRI due to diet can better host SARS-CoV-2 and leak it to other tissues through formation of giant syncitia,^[126] and

FIGURE 1 Proposed progression of events relating diet to disease outcome. **Panel A.** The top half of this panel shows that a plant-based diet promotes an anti-inflammatory (AI) feedback cycle, and leads to the setting up of an AI milieu that is then associated with a lack of any gut and/or systemic chronic inflammation (CHRI). The bottom half of the same panel shows that there is a typical (rather than an over-the-top) virus-triggered acute inflammation (ACUi), upon infection, which arises with difficulty but abates with ease because it occurs in an overall AI milieu. The end result of infection is thus a mild overall inflammatory outcome, with no hyper-inflammation (HYPI) seen. **Panel B.** The top half of this panel shows that a diet based on refined grain, red meat, alcohol and sugars, promotes a pro-inflammatory (PI) feedback cycle, and leads to the setting up of a PI milieu that is then associated with gut and systemic CHRI. This predisposes individuals to gut dysbiosis and leakiness. The bottom half of the same panel shows that there is thus an over-the-top, and out-of-control, virus-triggered ACUi, upon viral infection, that both occurs more easily and abates with more difficulty, because it occurs in an overall PI milieu that is characterized by a pre-existing chronic inflammation which desensitizes and suppresses AI mechanisms and pathways. The end result of infection is thus a sustained ACUi that transforms into HYPI characterized by a storm of cytokines and cells. Such HYPI, occurring in a PI milieu, gives rise to more organ dysfunction, morbidity and death. **Panel A** and **Panel B** are connected through a proposed exit strategy. Through this strategy, a PI milieu can be transformed into an AI milieu through adoption of a more plant-based diet, in a matter of days/weeks, to try and shift the outcome of infection towards milder inflammation and better disease prognosis. It is proposed that adoption of this exit strategy could provide a route out of the pandemic, at least until universal vaccination is feasible and effective against all present and future strains of SARS-CoV-2.

transcellular and paracellular hyper-permeability facilitated by infection of enterocytes.

Connections between obesity and inflammation, and obesity and Covid-19

Evidence is emerging that obesity predisposes individuals to developing severe Covid-19, and to poorer prognosis upon contracting a SARS-CoV-2 infection,^[113,127-132] including amongst those who are young. In the context of this paper and its focus on pre-existing CHRI in individuals, it must be noted that there is an intimate connection between obesity and CHRI. Obesity gives rise to inflammation, and inflammation also gives rise to obesity;^[133-135] the reason being that adipocytes secrete PI cytokines that promote further adipocyte growth, giving rise to a feedback loop that leads to increase in CHRI once obesity sets in,

with involvement of the liver, and of the acute phase proteins, in this feedback loop.^[136] It seems likely that this is related to nutrition, diet and lifestyle.

Thus, obesity could be considered yet another pre-existing condition predisposing to severe Covid-19, when associated with CHRI, like the many other chronic conditions such as hypertension, hyperglycemia, and certain forms of cancer that are associated with CHRI; however, the key underlying condition would still remain the basal CHRI in the gut and entire system. Our view is that systemic CHRI (S-CHRI) must be considered the main pre-existing condition that predisposes an individual to severe Covid-19, because S-CHRI can remain un-manifested and asymptomatic for years before it manifests as a florid or detectable medical condition. All of the explicitly-present pre-existing medical conditions could thus just be the tip of the iceberg predisposing individuals to severe Covid-19. CHRI could thus constitute the entire bulk of this iceberg which remains hidden from view.

Other recent relevant literature

A preprint of the very first version of this paper (revised thrice, and now in its fourth edition, during consideration for publication in this journal) was uploaded on Research Gate (DOI: 10.13140/RG.2.2.17723.44323), concomitantly with the first submission, on May 16, 2020. At that point of time, there were only three papers (e-published during April or May, 2020) that mentioned the possibility of a link between diet and Covid-19, in passing.^[137-140] During the 13 months that have passed since, numerous other papers have also noted connections between Covid-19 and diet, nutrition, microbiomes, dysbiosis, immunity, or inflammation,^[141-150] including one paper that happened to cite the original preprint on Research Gate.^[151] However, none of these earlier, or subsequent, papers explicitly holds chronic inflammation (CHRI) to be the cause of the proposed rapid rise and slow abatement of acute inflammation (ACUi), or the proposed spiralling of ACUi into hyper-inflammation (HYPI), as proposed in this paper. Therefore, the mechanistic insights outlined in this paper provide the first "end-to-end" explanation of the entire chain of causality connecting: (i) dietary habits to microbiome constitutions; (ii) microbiome constitutions to undetected gut CHRI and dysbiosis; (iii) undetected gut CHRI and dysbiosis to undetected widespread systemic CHRI; and (iv) undetected widespread systemic CHRI to susceptibility to developing Covid-19, and especially to susceptibility to severe disease in the form of HYPI, associated with thrombosis, organ dysbiosis and death. This proposed chain of causality holds CHRI driven by diet to be the main culprit and predisposing factor (amongst those with no known pre-existing medical conditions) for severe Covid-19.

A SUMMARY

Many humans host undetected chronic inflammation (CHRI), including chronic gut and/or lung inflammation, or widespread systemic inflammation, owing to their dietary and other habits, and also owing to their living in stress- and pollutant-laden physical, or chemical environments. This could predispose such humans to hyper-inflammation (HYPI) in the form of cytokine storms. It could also predispose them to organ dysbiosis and systemic organ HYPI associated with the leakage of materials (including SARS-CoV-2 itself) across tissue-blood barriers, leading to body-wide cytokine storms and thrombosis preceding any possible activation of an adaptive immune response to the virus. CHRI could thus potentially be the main determinant of susceptibility to severe Covid-19. CHRI could probably also be reduced through a shift of diet to foods that actively promote maintenance of a gut microbiome dominated by bacteria that curb gut, lung and body-wide inflammation, instead of promoting it. Records available with hospitals and health ministries could help to explore further correlations between diet and death, or morbidity, in Covid-19, given the known connections between diet, obesity and inflammation. Also, prospective controlled studies could be conducted to verify the benefits of anti-inflammatory

(AI) diets and gut microbiomes in curbing HYPI associated with viruses such as coronaviruses and influenza viruses. Notably, one such study that supports the contentions made in this paper has already appeared in the literature (150).

ACKNOWLEDGMENTS

The authors gratefully acknowledge the work of the large body of scientists and medical professionals who generated the knowledge that was used to make the correlations and conjectures presented in this paper.

CONFLICT OF INTEREST

The authors declare no conflicts of interest.

ORCID

Purnananda Guptasarma <https://orcid.org/0000-0002-4801-3180>

REFERENCES

- Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M. ... Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. *Lancet*, 395, 497–506.
- Mason, R. J. (2020). Pathogenesis of COVID-19 from a cell biology perspective. *European Respiratory Journal* 55, 200060. <https://doi.org/10.1183/13993003.00607-2020>
- Jordan, R. E., Adab, P., & Cheng, K. K. (2020). Covid-19: Risk factors for severe disease and death. *British Medical Journal*, 368, m1198. <https://doi.org/10.1136/bmjj.m1198>
- Wadman, M., Couzin-Frankel, J., Kaiser, J., & Matacic, C. (2020). A rampage through the body. *Science*, 368, 356–360.
- Chen, Y., Feng, Z., Diao, B., & Wang, R. (2020). The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directly decimates human spleens and lymph nodes. *MedRxiv*, <https://doi.org/10.1101/2020.03.27.20045427.medRxiv>
- Liu, K., Chen, Y., Lin, R., & Han, K. (2020). Clinical features of Covid-19 in elderly patients: A comparison with young and middle-aged patients. *Journal of Infection*, e14–e18, <https://doi.org/10.1016/j.jinf.2020.03.005>
- Preliminary estimates of the prevalence of selected underlying health conditions among patients with Coronavirus Disease 2019 – United States, February 12–March 28, 2020. *MMWR Morbidity and Mortality Weekly Report* 69, 382–386; <https://doi.org/10.15585/mmwr.mm6913e2>
- Gandhi, M., Yokoe, D. S., & Havlir, D. V. (2020). Asymptomatic transmission: the Achilles' heel of current strategies to control Covid-19. *The New England Journal of Medicine*, 382–386, <https://doi.org/10.1056/NEJMMe2009758>
- World Health Organization (2020). Report of the WHO-China joint mission on Coronavirus Disease 2019 (COVID-19). Available online at: <https://www.who.int/docs/default-source/coronavirus/who-china-joint-mission-on-covid-19-final-report.pdf>
- Klok, F. A., Kruip, M. J. H. A., Van Der Meer, N. J. M., Arbous, M. S., Gommers, D., Kant, K. M., Kaptein, F. H. J., Van Paassen, J., Stals, M. A. M., Huisman, M. V., & Endeman, H. (2020). Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: An updated analysis. *Thrombosis Research*, 148–150, <https://doi.org/10.1016/j.thromres.2020.04.041>
- Peate, I. (2020). Why are more BAME people dying from COVID-19? *British Journal of Nursing*, 29, 545. <https://doi.org/10.12968/bjon.2020.29.10.545>

12. Jin, J. - M., Bai, P., He, W., Wu, F., Liu, X. - F., Han, D.-M., Liu, S., & Yang, J. - K. (2020). Gender differences in patients with COVID-19: Focus on severity and mortality. *Frontiers Public Health*, 8, 152. <https://doi.org/10.3389/fpubh.2020.00152>
13. Jones, V. G., Mills, M., & Suarez, D. (2020). COVID-19 and Kawasaki disease: Novel virus and novel case *Hospital Pediatrics*, 10, 537–540.
14. Dhont, S., Derom, E., Van Braeckel, E., Depuydt, P., Lambrecht, B. N. (2020). The pathophysiology of 'happy' hypoxemia in COVID-19. *Respiratory Research*, 21, 198. <https://doi.org/10.1186/s12931-020-01462-5>
15. Nguyen, A., David, J. K., Maden, S. K., Wood, M. A., Weeder, B. R., Nellore, A., Thompson, R. F. (2020). Human leukocyte antigen susceptibility map for SARS-CoV-2. *Journal of Virology*, <https://doi.org/10.1128/JVI.00510-20>
16. Ng, K., Poon, B. H., Kiat Puar, T. H., Shan Quah, J. L., Loh, W. J., Wong, Y. J., Tan, T. Y., Raghuram, J. (2020). COVID-19 and the risk to health care workers: A case report. *Annals of Internal Medicine*, 766–767, <https://doi.org/10.7326/L20-0175>
17. Bonilla, F. A., Oettgen, H. C. (2010). Adaptive immunity. *Journal of Allergy and Clinical Immunology*, 125, S33–S40.
18. Turvey, S. E., Broide, D. H. (2010). Innate immunity. *Journal of Allergy and Clinical Immunology*, 125, S24–S32.
19. Shi, Yu, Yu, X., Zhao, H., Wang, H., Zhao, R., & Sheng, J. (2020). Host susceptibility to severe COVID-19 and establishment of a host risk score: Findings of 487 cases outside Wuhan. *Critical Care (London, England)*, 24, 108. <https://doi.org/10.1186/s13054-020-2833-7>
20. Slack, E., Hapfelmeier, S., Stecher, B., Velykoredko, Y., Stoel, M., Lawson, M. A. E., Geuking, M. B., Beutler, B., Tedder, T. F., Hardt, W. - D., Bercik, P., Verdu, E. F., Mccoy, K. D., & Macpherson, A. J. (2009). Innate and adaptive immunity cooperate flexibly to maintain host-microbiota mutualism. *Science*, 325, 617–620
21. Zheng, M., Gao, Y., Wang, G., Song, G., Liu, S., Sun, D., Xu, Y., & Tian, Z. (2020). Functional exhaustion of antiviral lymphocytes in COVID-19 patients. *Cellular & Molecular Immunology*, 17, 533–535.
22. Antonioli, L., Fornai, M., Pellegrini, C., & Blandizzi, C. (2020). NKG2A and COVID-19: Another brick in the wall. *Cellular & Molecular Immunology*, 17, 672–674.
23. Garrett, W. S., Gordon, J. I., & Glimcher, L. H. (2010). Homeostasis and inflammation in the intestine. *Cell*, 140, 859–870.
24. Maloy, K. J., & Powrie, F. (2011). Intestinal homeostasis and its breakdown in inflammatory bowel disease. *Nature*, 474, 298–306.
25. Gianluigi, Z., Jeremy, L., Lorenzo, S., & Giovanni, G. (2019). Effects of antirejection drugs on innate immune cells after kidney transplantation. *Frontiers in immunology*, 10, 2978.
26. Rosenzweig, S. D., & Holland, S. M. (2011). Recent insights into the pathobiology of innate immune deficiencies. *Current Allergy and Asthma Reports*, 11, 369–377.
27. Maggini, S., Pierre, A., & Calder, P. (2018). Immune function and micronutrient requirements change over the life course. *Nutrients* 10, 1531.
28. Winans, B., Humble, M. C., & Lawrence, B. P. (2011). Environmental toxicants and the developing immune system: A missing link in the global battle against infections disease? *Reproductive Toxicology*, 31, 327–336.
29. Levy, M., Kolodziejczyk, A. A., Thaiss, C. A., Elinav, E. (2017). Dysbiosis and the immune system. *Nature Reviews Immunology*, 17, 219–232.
30. Shi, Y., Wang, Y., Shao, C., Huang, J., Gan, J., Huang, X., Bucci, E., Piacentini, M., Ippolito, G., & Melino, G. (2020). COVID-19 infection: The perspectives on immune responses. *Cell Death Different*, 27, 1451–1454.
31. Merad, M., & Martin, J. C. (2020). Pathological inflammation in patients with COVID-19: A key role for monocytes and macrophages. *Nature Reviews Immunology*, 355–362, <https://doi.org/10.1038/s41577-020-0331-4>
32. Kernan, K. F., & Canna, S. W. (2020). Should COVID-19 take advice from rheumatologists? *The Lancet*, e310–e311, [https://doi.org/10.1016/S2665-9913\(20\)30129-6](https://doi.org/10.1016/S2665-9913(20)30129-6)
33. Riphagen, S., Gomez, X., Gonzalez-Martinez, C., Wilkinson, N., & Theocharis, P. (2020). Hyper-inflammatory shock in children during COVID-19 pandemic. *The Lancet*, 1607–1608, [https://doi.org/10.1016/S0140-6736\(20\)31094-1](https://doi.org/10.1016/S0140-6736(20)31094-1)
34. Tay, M. Z., Poh, C. M., Rénia, L., Macary, P. A., & Ng, L. F. P. (2020). The trinity of COVID-19: Immunity, inflammation and intervention. *Nature Reviews Immunology*, 363–374, <https://doi.org/10.1038/s41577-020-0311-8>
35. Tufan, A., Avanoğlu Güler, A., & Matucci-Cerinic, M. (2020). COVID-19, immune system response, hyperinflammation and repurposing antirheumatic drugs. *Turkish Journal of Medical Sciences*, 50, 620–632.
36. Mcgonagle, D., Sharif, K., O'regan, A., & Bridgewood, C. (2020). The role of cytokines including interleukin-6 in Covid-19 induced pneumonia and macrophage activation syndrome-like disease. *Autoimmunity Reviews*, 102537, <https://doi.org/10.1016/j.autrev.2020.102537>
37. Zaim, S., Chong, J. H., Sankaranarayanan, V., & Harky, A. (2020). Covid-19 and multi-organ response. *Current Problems in Cardiology*, 100618, <https://doi.org/10.1016/j.cpcardiol.2020.100618>
38. Libby, P., & Simon, D. I. (2001). Inflammation and thrombosis: The plot thickens. *Circulation*, 103, 1718–1720
39. Jose, R. J., & Manuel, A. (2020). COVID-19 cytokine storm: The interplay between inflammation and coagulation. *The Lancet Respiratory Medicine*, e46–e47, [https://doi.org/10.1016/S2213-2600\(20\)30216-2](https://doi.org/10.1016/S2213-2600(20)30216-2)
40. Wright, T. M. (1997). Cytokines in acute and chronic inflammation *Frontiers in Bioscience*, 2, d12–26. <https://doi.org/10.2741/a171>
41. Jain, S., Gautam, V., & Naseem, S. (2011). Acute-phase proteins as diagnostic tool. *Journal of Pharmacy and Bioallied Sciences*, 3, 118–127.
42. Shreiner, A. B., Kao, J. Y., & Young, V. B. (2015). The gut microbiome in health and in disease. *Current Opinion in Gastroenterology*, 31, 69–75.
43. David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E., Wolfe, B. E., Ling, A. V., Devlin, A. S., Varma, Y., Fischbach, M. A., Biddinger, S. B., Dutton, R. J., & Turnbaugh, P. J. (2014). Diet rapidly and reproducibly alters the human gut microbiome. *Nature*, 505, 559–563
44. Claesson, M. J., Jeffery, I. B., Conde, S., Power, S. E., O'connor, E. M., Cusack, S., Harris, H. M. B., Coakley, M., Lakshminarayanan, B., O'sullivan, O., Fitzgerald, G. F., Deane, J., O'connor, M., Harnedy, N., O'connor, K., O'mahony, D., Van Sinderen, D., Wallace, M., Brennan, L. ... O'toole, P. W. (2012). Gut microbiota composition correlates with diet and health in the elderly. *Nature*, 488, 178–184.
45. Moschen, A. R., Wieser, V., & Tilg, H. (2012). Dietary factors: major regulators of the gut's microbiota. *Gut and Liver*, 6, 411–416.
46. El-kaoutari, A., Armougom, F., Gordon, J. I., & Raoult, D. (2013). The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. *Nature Reviews Microbiology*, 11, 497–504.
47. Zhang, C., Björkman, A., Cai, K., Liu, G., Wang, C., Li, Y., Xia, H., Sun, L., Kristiansen, K., Wang, J., Han, J., Hammarström, L., & Pan-Hammarström, Q. (2018). Impact of a 3-months vegetarian diet on the gut microbiota and immune repertoire. *Frontiers in immunology*, 9, 908.
48. Koh, A., De Vadder, F., Kovatcheva-Datchary, P., & Bäckhed, F. (2016). From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. *Cell*, 165, 1332–1345.
49. Erny, D., Hrabé De Angelis, A. L., & Prinz, M. (2017). Communicating systems in the body: How microbiota and microglia cooperate. *Immunology*, 150, 7–15.
50. Zhao, Ye, Chen, F., Wu, W., Sun, M., Bilotto, A. J., Yao, S., Xiao, Yi, Huang, X., Eaves-Pyles, T. D., Golovko, G., Fofanov, Y., D'souza, W., Zhao, Q., Liu, Z., & Cong, Y. (2018). GPR43 mediates microbiota metabolite SCFA regulation of antimicrobial peptide expression in

intestinal epithelial cells via activation of mTOR and STAT3. *Mucosal Immunology*, 11, 752–762.

51. Parada Venegas, D., De La Fuente, M. K., Landskron, G., González, M. J., Quera, R., Dijkstra, G., Harmsen, H. J. M., Faber, K. N., & Hermoso, M. A. (2019). Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. *Frontiers in immunology*, 10, 277.

52. Macia, L., Tan, J., Vieira, A. T., Leach, K., Stanley, D., Luong, S., Maruya, M., Ian McKenzie, C., Hijikata, A., Wong, C., Binge, L., Thorburn, A. N., Chevalier, N., Ang, C., Marino, E., Robert, R., Offermanns, S., Teixeira, M. M., Moore, R. J.... Mackay, C. R. (2015). Metabolites-sensing receptors GPR43 and GPR109A facilitate dietary fiber-induced gut homeostasis through regulation of the inflammasome. *Nature communications*, 6, 1–15.

53. Cases, A., Cigarrán-Guldrís, S., Mas, S., & Gonzalez-Parra, E. (2019). Vegetable-based diets for chronic kidney disease? it is time to reconsider. *Nutrients*, 11: 1263.

54. Ijssennagger, N., Derrien, M., Van Doorn, G. M., Rijnierse, A., Van Den Bogert, B., Müller, M., Dekker, J., Kleerebezem, M., & Van Der Meer, R. (2012). Dietary heme alters microbiota and mucosa of mouse colon without functional changes in host-microbe cross-talk. *Plos One*, 7, e49868.

55. Le Leu, R. K., Young, G. P., Hu, Y., Winter, J., & Conlon, M. A. (2013). Dietary red meat aggravates dextran sulfate sodium-induced colitis in mice whereas resistant starch attenuates inflammation. *Digestive Diseases and Sciences*, 58, 3475–3482.

56. Thorburn, A. N., Macia, L., Mackay, C. R. (2014). Diet, metabolites and 'western-lifestyle' inflammatory diseases. *Immunity*, 40, 833–842.

57. Albenberg, L. G., & Wu, G. D. (2014). Diet and the intestinal microbiome: Associations, functions, and implications for health and disease. *Gastroenterology*, 146, 1564–1572.

58. Schaubeck, M., & Haller, D. (2015). Reciprocal interaction of diet and microbiome in inflammatory bowel diseases. *Current Opinion in Gastroenterology*, 31, 464–470.

59. Song, M., Garrett, W. S., & Chan, A. T. (2015). Nutrients, foods, and colorectal cancer prevention. *Gastroenterology*, 148, 1244–1260.e16.

60. O'keefe, S. J. D. (2016). Diet, microorganisms and their metabolites, and colon cancer. *Nature Reviews Gastroenterology & Hepatology*, 13, 691–706.

61. Desai, M. S., Seekatz, A. M., Koropatkin, N. M., Kamada, N., Hickey, C. A., Wolter, M., Pudlo, N. A., Kitamoto, S., Terrapon, N., Muller, A., Young, V. B., Henrissat, B., Wilmes, P., Stappenbeck, T. S., Núñez, G., & Martens, E. C. (2016). A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. *Cell*, 167, 1339–1353.e21.

62. Agus, A., Denizot, J., Thévenot, J., Martinez-Medina, M., Massier, S., Sauvaget, P., Bernalier-Donadille, A., Denis, S., Hofman, P., Bonnet, R., Billard, E., & Barnich, N. (2016). Western diet induces a shift in microbiota composition enhancing susceptibility to Adherent-Invasive E. coli infection and intestinal inflammation. *Scientific Reports*, 6, 19032.

63. Alisson-Silva, F., Kawanishi, K., Varki, A. (2016). Human risk of diseases associated with red meat intake: Analysis of current theories and proposed role for metabolic incorporation of a non-human sialic acid. *Molecular Aspects of Medicine*, 51, 16–30.

64. Oberli, M., Lan, A., Khodorova, N., & Santé-Lhoutellier, V. (2016). Compared with raw bovine meat, boiling but not grilling, barbecuing, or roasting decreases protein digestibility without any major consequences for intestinal mucosa in rats, although the daily ingestion of bovine meat induces histologic modifications in the colon. *Journal of Nutrition*, 146, 1506–13.

65. Singh, R. K., Chang, H. - W., Yan, D., Lee, K. M., Ucmak, D., Wong, K., Abrouk, M., Farahnik, B., Nakamura, M., Zhu, T. H., Bhutani, T., & Liao, W. (2017). Influence of diet on the gut microbiome and implications for human health. *Journal of Translational Medicine*, 15, 73

66. Constante, M., Fragoso, G., Calvé, A., Samba-Mondonga, M., & Santos, M. M. (2017). Dietary heme induces gut dysbiosis, aggravates colitis, and potentiates the development of adenomas in mice. *Frontiers in Microbiology*, 8, 1809.

67. Qasem, W., Azad, M. B., Hossain, Z., & Azad, E. (2017). Assessment of complementary feeding of Canadian infants: Effects on microbiome & oxidative stress, a randomized controlled trial. *Bmc Pediatrics [Electronic Resource]*, 17, 54.

68. Ijaz, M. U., Ahmed, M. I., Zou, X., Hussain, M., Zhang, M., Zhao, F., Xu, X., Zhou, G., & Li, C. (2018). Beef, casein, and soy proteins differentially affect lipid metabolism, triglycerides accumulation and gut microbiota of high-fat diet-fed C57BL/6J Mice. *Frontiers in Microbiology*, 9, 2200.

69. Ribaldone, D. G., Pellicano, R., & Actis, G. C. (2018). Inflammation: A highly conserved, Janus-like phenomenon-a gastroenterologist' perspective. *Journal of Molecular Medicine*, 96, 861–871.

70. Liu, Li, Tabung, F. K., Zhang, X., Nowak, J. A., Qian, Z. R., Hamada, T., Nevo, D., Bullman, S., Mima, K., Kosumi, K., Da Silva, Ax, Song, M., Cao, Y., Twombly, T. S., Shi, Y., Liu, H., Gu, M., Koh, H., Li, W.... Giovannucci, E. L. (2018). Diets that promote colon inflammation associate with risk of colorectal carcinomas that contain fusobacterium nucleatum. *Clinical Gastroenterology and Hepatology*, 16, 1622–1631.e3.e3.

71. Kopp, T. I., Vogel, U., Tjonneland, A., & Andersen, V. (2018). Meat and fiber intake and interaction with pattern recognition receptors (TLR1, TLR2, TLR4, and TLR10) in relation to colorectal cancer in a Danish prospective, case-cohort study. *American Journal of Clinical Nutrition*, 107, 465–479.

72. Leustean, A. M., Ciocoiu, M., Sava, A., Costea, C. F., Floria, M., Tarnericiu, C. C., & Tanase, D. M. (2018). Implications of the intestinal microbiota in diagnosing the progression of diabetes and the presence of cardiovascular complications. *Journal of Diabetes Research*, 2018, 5205126, <https://doi.org/10.1155/2018/5205126>.

73. Grigoryan, H., Schiffman, C., Gunter, M. J., Naccarati, A., Polidoro, S., Dagnino, S., Dudoit, S., Vineis, P., & Rappaport, S. M. (2019). Cys34 adductomics links colorectal cancer with the gut microbiota and redox biology. *Cancer Research*, 79, 6024–6031.

74. Chan, M. M., Yang, X., Wang, H., Saaoud, F., Sun, Y., & Fong, D. (2019). The microbial metabolite trimethylamine N-Oxide links vascular dysfunctions and the autoimmune disease rheumatoid arthritis. *Nutrients*, 11, 1821.

75. Szczechowiak, K., Diniz, B. S., & Leszek, J. (2019). Diet and Alzheimer's dementia – Nutritional approach to modulate inflammation. *Pharmacology, Biochemistry and Behavior*, 184, 172743.

76. Ahmad, M. I., Zou, X., Ijaz, M. U., Hussain, M., Liu, C., Xu, X., Zhou, G., & Li, C., (2019). Processed meat protein promoted inflammation and hepatic lipogenesis by upregulating nrf2/keap1 signaling pathway in glrx-deficient mice. *Journal of Agricultural and Food Chemistry*, 67, 8794–8809.

77. Siracusa, F., Schaltenberg, N., Villalba, E. J., Huber, S., & Gagliani, N. (2019). Dietary habits and intestinal immunity: From food intake to CD4(+) T (H) cells. *Frontiers in Immunology*, 9, 3177.

78. Chiba, M., Nakane, K., & Komatsu, M. (2019). Westernized diet is the most ubiquitous environmental factor in inflammatory bowel disease. *The Permanente Journal*, 23, 18–107.

79. Van Hecke, T., De Vrieze, J., Boon, N., & De Vos, W. H. (2019). Combined consumption of beef-based cooked mince and sucrose stimulates oxidative stress, cardiac hypertrophy, and colonic outgrowth of desulfovibronaceae in rats. *Molecular Nutrition & Food Research*, 63, e1800962.

80. Kostovcikova, K., Coufal, S., Galanova, N., Fajstova, A., Hudcovic, T., Kostovcik, M., Prochazkova, P., Jiraskova Zakostelska, Z., Cermakova, M., Sediva, B., Kuzma, M., Tlaskalova-Hogenova, H., & Kverka, M. (2019). Diet rich in animal protein promotes proinflammatory macrophage response and exacerbates colitis in mice. *Frontiers in Immunology*, 10, 919, <https://doi.org/10.3389/fimmu.2019.00919>

81. Zhang, M., Zou, X., Zhao, Di, Zhao, F., & Li, C. (2020). Pork meat proteins alter gut microbiota and lipid metabolism genes in the colon of adaptive immune-deficient mice. *Molecular Nutrition & Food Research*, 64, 1901105.
82. Wang, H. J., Gao, B., Zakhari, S., & Nagy, L. E. (2012). Inflammation in alcoholic liver disease. *Annual Review of Nutrition*, 32, 343–368.
83. Andrade, M. C., Vaz, N. M., & Faria, A. M. C. (2003). Ethanol-induced colitis prevents oral tolerance induction in mice. *Brazilian Journal of Medical and Biological Research*, 36, 1227–1232.
84. Mutlu, E., Keshavarzian, A., Engen, P., Forsyth, C. B., Sikaroodi, M., & Gillevet, P. (2009). Intestinal dysbiosis: A possible mechanism of alcohol-induced endotoxemia and alcoholic steatohepatitis in rats. *Alcoholism, Clinical and Experimental Research*, 33, 1836–1846.
85. Bull-Otterson, L., Feng, W., Kirpich, I., Wang, Y., Qin, X., Liu, Y., Gobejishvili, L., Joshi-Barve, S., Ayvaz, T., Petrosino, J., Kong, M., Barker, D., McClain, C., Barve, S. (2013). Metagenomic analyses of alcohol induced pathogenic alterations in the intestinal microbiome and the effect of *Lactobacillus rhamnosus* GG treatment. *Plos One*, 8, e53028.
86. Kakiyama, G., Hylemon, P. B., Zhou, H., Pandak, W. M., Heuman, D. M., Kang, D. J., Takei, H., Nittono, H., Ridlon, J. M., Fuchs, M., Gurley, E. C., Wang, Y., Liu, R., Sanyal, A. J., Gillevet, P. M., & Bajaj, J. S. (2014). Colonic inflammation and secondary bile acids in alcoholic cirrhosis. *American Journal of Physiology, Gastrointestinal and Liver Physiology*, 306, G929–G937.
87. Chen, Y. -L., Peng, H. C., Hsieh, Y. -C., & Yang, S. - C. (2014). Epidermal growth factor improved alcohol-induced inflammation in rats. *Alcohol*, 48, 701–706.
88. Chiu, W. - C., Huang, Ya-Li, Chen, Y. -L., Peng, H. - C., Liao, W. - H., Chuang, H. - L., Chen, J. - R., & Yang, S. - C. (2015). Synbiotics reduce ethanol-induced hepatic steatosis and inflammation by improving intestinal permeability and microbiota in rats. *Food & Function*, 6, 1692–1700.
89. Engen, P. A., Green, S. J., Voigt, R. M., & Forsyth, C. B. (2015). The gastrointestinal microbiome: alcohol effects on the composition of intestinal microbiota. *Alcohol Research*, 37, 223–36.
90. Bishehsari, F., Saadalla, A., Khazaie, K., Engen, P., Voigt, R., Shetuni, B., Forsyth, C., Shaikh, M., Vitaterna, M., Turek, F., & Keshavarzian, A. (2016). Light/dark shifting promotes alcohol-induced colon carcinogenesis: possible role of intestinal inflammatory milieu and microbiota. *International Journal of Molecular Sciences*, 17, 2017.
91. Neuman, M. G., French, S. W., Zakhari, S., Malnick, S., Seitz, H. K., Cohen, L. B., Salaspuro, M., Voinea-Griffin, A., Barasch, A., Kirpich, I. A., Thomes, P. G., Schrum, L. W., Donohue, T. M., Kharbanda, K. K., Cruz, M., & Opris, M. (2017). Alcohol, microbiome, life style influence alcoholic and non-alcoholic organ damage. *Experimental and Molecular Pathology*, 102, 162–180.
92. Lowe, P. P., Gyongyosi, B., Satishchandran, A., Iracheta-Vellve, A., Ambade, A., Kodys, K., Catalano, D., Ward, D. V., & Szabo, G. (2017). Alcohol-related changes in the intestinal microbiome influence neutrophil infiltration, inflammation and steatosis in early alcoholic hepatitis in mice. *Plos One*, 12, e0174544.
93. Samuelson, D. R., Shellito, J. E., Maffei, V. J., Tague, E. D., Campagna, S. R., Blanchard, E. E., Luo, M., Taylor, C. M., Ronis, M. J. J., Molina, P. E., & Welsh, D. A. (2017). Alcohol-associated intestinal dysbiosis impairs pulmonary host defense against *Klebsiella pneumoniae*. *Plos Pathogens*, 13, e1006426.
94. Bishehsari, F., Magno, E., Swanson, G., & Desai, V. (2017). Alcohol and gut-derived inflammation. *Alcohol Research*, 38, 163–171.
95. Llorente, C., Jepsen, P., Inamine, T., Wang, L., Bluemel, S., Wang, H. J., Loomba, R., Bajaj, J. Z. S., Schubert, M. L., Sikaroodi, M., Gillevet, P. M., Xu, J., Kisseleva, T., Ho, S. B., Depew, J. V., Du, X., Sørensen, H. T., Vilstrup, H. V. Z., Nelson, K. E., Brenner, D. A. ... Schnabl, B. (2017). Gastric acid suppression promotes alcoholic liver disease by inducing overgrowth of intestinal *Enterococcus*. *Nature Communications*, 8, 837.
96. Zhou, Z., Zhong, W. (2017). Targeting the gut barrier for the treatment of alcoholic liver disease. *Liver Research*, 1, 197–207.
97. Shao, T., Zhao, C., Li, F., Gu, Z., Liu, L., Zhang, L., Wang, Y., He, L., Liu, Y., Liu, Qi, Chen, Y., Donde, H., Wang, R., Jala, V. R., Barve, S., Chen, S. -Y., Zhang, X., Chen, Y., McClain, C. J., & Feng, W. (2018). Intestinal HIF-1 α deletion exacerbates alcoholic liver disease by inducing intestinal dysbiosis and barrier dysfunction. *Journal of Hepatology*, 69: 886–895.
98. Lowe, P. P., Gyongyosi, B., Satishchandran, A., Iracheta-Vellve, A., Cho, Y., Ambade, A., & Szabo, G. (2018). Reduced gut microbiome protects from alcohol-induced neuroinflammation and alters intestinal and brain inflammasome expression. *Journal of Neuroinflammation*, 15, 298.
99. Roychowdhury, S., Glueck, B., Han, Y., Mohammad, M. A., & Cresci, G. A. M. (2019). A designer synbiotic attenuates chronic-binge ethanol-induced gut-liver injury in mice. *Nutrients*, 11: 97.
100. Qamar, N., Castano, D., Patt, C., Chu, T., Cottrell, J., & Chang, S. G. L. (2019). Meta-analysis of alcohol induced gut dysbiosis and the resulting behavioral impact. *Behavioural Brain Research*, 376: 112196.
101. Giménez-Gómez, P., Pérez-Hernández, M., O'shea, E., Caso, J. R., Martín-Hernández, D., Cervera, L. A., Centelles, M. L. G.-L., Gutiérrez-López, M. D., & Colado, M. I. (2019). Changes in brain kynurenone levels via gut microbiota and gut-barrier disruption induced by chronic ethanol exposure in mice. *Faseb Journal*, 33: 12900–12914.
102. Warner, D. R., Warner, J. B., Hardesty, J. E., Song, Y. L., King, T. N., Kang, J. X., Chen, C. -Y., Xie, S., Yuan, F., md Prodhan, A. I., Ma, X., Zhang, X., Rouchka, E. C., Maddipati, K. R., Whitlock, J., Li, E. C., Wang, G. P., McClain, C. J., & Kirpich, I. A. (2019). Decreased ω -6: Ω -3 PUFA ratio attenuates ethanol-induced alterations in intestinal homeostasis, microbiota, and liver injury. *Journal of Lipid Research*, 60: 2034–2049.
103. Bishehsari, F., Engen, P. A., Voigt, R. M., Swanson, G., Shaikh, M., Wilber, S., Naqib, A., Green, S. J., Shetuni, B., Forsyth, C. B., Saadalla, A., Osman, A., Hamaker, B. R., Keshavarzian, A., & Khazaie, K. (2020). Abnormal eating patterns cause circadian disruption and promote alcohol-associated colon carcinogenesis. *Cellular and Molecular Gastroenterology and Hepatology*, 9, 219–237.
104. Xiao, J., Zhang, R., Wu, Y., Wu, C., Jia, X., Dong, L., Liu, L., Chen, Y., Bai, Y., & Zhang, M. (2020). Rice Bran phenolic extract protects against alcoholic liver injury in mice by alleviating intestinal microbiota dysbiosis, barrier dysfunction, and liver inflammation mediated by the endotoxin-TLR4-NF- κ B pathway. *Journal of Agricultural and Food Chemistry*, 68, 1237–1247.
105. Lee, J. - E., Ha, J. S., Park, H. - Y., & Lee, E. (2020). Alteration of gut microbiota composition by short-term low-dose alcohol intake is restored by fermented rice liquor in mice. *Food Research International*, 128, 108800.
106. Park, H., Cho, D., Huang, E., Seo, Ju. Y., Kim, W. G., Todorov, S. D., Ji, Y., & Holzapfel, W. H., (2020). Amelioration of alcohol induced gastric ulcers through the administration of *lactobacillus plantarum* APSuloc 331261 isolated from green tea. *Frontiers in Microbiol*, 11: 420.
107. McMahan, R. H., Afshar, M., Amedee, A. M., Bishehsari, F., Carr, R. M., Coleman, L. G., Herrnreiter, C. J., Lewis, S. L., Mandrekar, P., McCullough, R. L., Morris, N. L., Vasilious, V., Wang, H. J., Yeligar, S. M., Choudhry, M. A., & Kovacs, E. J. (2020). Summary of the 2019 alcohol and immunology research interest group (AIRIG) meeting: Alcohol-mediated mechanisms of multiple organ injury *Alcohol*, 89–95, <https://doi.org/10.1016/j.alcohol.2020.04.008>
108. Daulatzai, M. (2015). Non-celiac gluten sensitivity triggers gut dysbiosis, neuroinflammation, gut-brain axis dysfunction, and vulnerability for dementia. *CNS & Neurological Disorders-Drug Targets*, 14: 110–131.
109. Mohan, M., Chow, C. - E., Ryan, C., Chan, L., Dufour, J., Aye, P., Blanchard, J., Moehs, C., & Sestak, K. (2016). Dietary gluten-induced gut

dysbiosis is accompanied by selective upregulation of microRNAs with intestinal tight junction and bacteria-binding motifs in rhesus macaque model of celiac disease. *Nutrients*, 8, 684.

110. Igbiniedion, S. O., Ansari, J., Vasikaran, A., Gavins, F. N., Jordan, P., Boktor, M., & Alexander, J. S. (2017). Non-celiac gluten sensitivity: All wheat attack is not celiac. *World Journal of Gastroenterology: WJG*, 23, 7201–7210.

111. Satokari, R. (2020). High intake of sugar and the balance between pro- and anti-inflammatory gut bacteria. *Nutrients*, 12, 1348. <https://doi.org/10.3390/nu12051348>

112. Della Corte, K., Perrar, I., Penczynski, K., Schwingshakel, L., Herder, C., & Buyken, A. (2018). Effect of dietary sugar intake on biomarkers of subclinical inflammation: A systematic review and meta-analysis of intervention studies. *Nutrients*, 10, 606. <https://doi.org/10.3390/nu10050606>

113. Lawrence, G. D. (2021). Perspective: The Saturated fat-unsaturated oil dilemma: relations of dietary fatty acids and serum cholesterol, atherosclerosis, inflammation, cancer, and all-cause mortality. *Advances in Nutrition*, 12, 647–656. nmab013. <https://doi.org/10.1093/advances/nmab013>

114. Torales, J., O'higgins, M., Castaldelli-Maia, J. M., & Ventriglio, A. (2020). The outbreak of COVID-19 coronavirus and its impact on global mental health. *International Journal of Social Psychiatry*, 66, 317–320.

115. Vanuytsel, T., Van Wanrooy, S., Vanheel, H., Vanormelingen, C., Verschueren, S., Houben, E., Salim Rasool, S., Tóth, J., Holvoet, L., Farré, R., Van Oudenhove, L., Boeckxstaens, G., Verbeke, K., & Tack, J. Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism. *Gut*, 63, 1293–1299.

116. Furman, D., Campisi, J., Verdin, E., Carrera-Bastos, P., Targ, S., Franceschi, C., Ferrucci, L., Gilroy, D. W., Fasano, A., Miller, G. W., Miller, A. H., Mantovani, A., Weyand, C. M., Barzilai, N., Goronzy, J. J., Rando, T. A., Effros, R. B., Lucia, A., Kleinstreuer, N., & Slavich, G. M. (2019). Chronic inflammation in the etiology of disease across the life span. *Nature Medicine*, 25, 1822–1832.

117. Arthur, J. C., Perez-Chanona, E., Mühlbauer, M., Tomkovich, S., Uronis, J. M., Fan, T. - J., Campbell, B. J., Abujamel, T., Dogan, B., Rogers, A. B., Rhodes, J. M., Stintzi, A., Simpson, K. W., Hansen, J. J., Keku, T. O., Fodor, A. A., & Jobin, C. (2012). Intestinal inflammation targets cancer-inducing activity of the microbiota. *Science*, 338, 120–123.

118. Ahmad, R., Sorrell, M. F., Batra, S. K., Dhawan, P., & Singh, A. B. (2017). Gut permeability and mucosal inflammation: Bad, good or context-dependent. *Mucosal Immunology*, 10, 307–317.

119. Odenwald, M. A. & Turner, J. R. (2017). The intestinal epithelial barrier: A therapeutic target? *Nature Reviews Gastroenterology & Hepatology*, 14, 9–21.

120. Anderson, G. & Maes, M. (2020). Gut dysbiosis dysregulates central and systemic homeostasis via suboptimal mitochondrial function: Assessment, treatment and classification implications. *Current Topics in Medicinal Chemistry*, 20, 524–539.

121. Yu, L. C.-H. (2018). Microbiota dysbiosis and barrier dysfunction in inflammatory bowel disease and colorectal cancers: Exploring a common ground hypothesis. *Journal of Biomedical Science*, 25, 79.

122. Lamers, M. M., Beumer, J., Van Der Vaart, J., Knoops, K., Puschhof, J., Breugem, T. I., Ravelli, R. B. G., Paul Van Schayck, J., Mykytyn, A. Z., Duimel, H. Q., Van Donselaar, E., Riesebosch, S., Kuijpers, H. J. H., Schipper, D., Van De Wetering, W. J., De Graaf, M., Koopmans, M., Cuppen, E., Peters, P. J. ... Clevers, H. (2020). SARS-CoV-2 productively infects human gut enterocytes. *Science*, 50–54, <https://doi.org/10.1126/science.abc1669>

123. Wu, Y., Guo, C., Tang, L., Hong, Z., Zhou, J., Dong, X., Yin, H., Xiao, Q., Tang, Y., Qu, X., Kuang, L., Fang, X., Mishra, N., Lu, J., Shan, H., Jiang, G., & Huang, X. Prolonged presence of SARS-CoV-2 viral RNA in fecal samples. *The Lancet*, 434–435, [https://doi.org/10.1016/s2468-1253\(20\)30083-2](https://doi.org/10.1016/s2468-1253(20)30083-2).

124. Gu, S., Chen, Y., Wu, Z., Chen, Y., Gao, H., Lv, L., Guo, F., Zhang, X., Luo, R., Huang, C., Lu, H., Zheng, B., Zhang, J., Yan, R., Zhang, H., Jiang, H., Xu, Q., Guo, J., Gong, Y. ... Li, L. (2020). Alterations of the gut microbiota in patients with COVID-19 or H1N1 influenza. *Clinical Infectious Diseases*, 2669–2678, <https://doi.org/10.1093/cid/ciaa709>

125. Zuo, T., Zhang, F., Lui, G. C. Y., Yeoh, Y. K., Li, A. Y. L., Zhan, H., Wan, Y., Chung, A. C. K., Cheung, C. P., Chen, N., Lai, C. K. C., Chen, Z., Tso, E. Y. K., Fung, K. S. C., Chan, V., Ling, L., Joynt, G., Hui, D. S. C., Chan, F. K. L. ... Ng, S. C. (2020). Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. *Gastroenterology*, 944–955.e8, S0016-5085(20)34701-6. <https://doi.org/10.1053/j.gastro.2020.05.048>

126. Qian, Z., Dominguez, S. R., & Holmes, K. V. (2013). Role of the spike glycoprotein of human Middle East respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia formation. *Plos One*, 8, e76469. [e76469]

127. Malik, P., Patel, U., Patel, K., Martin, M., Shah, C., Mehta, D., Malik, F. A., & Sharma, A. (2021). Obesity a predictor of outcomes of COVID-19 hospitalized patients: A systematic review and meta-analysis. *Journal of Medical Virology*, 93(2), 1188–1193.

128. Huang, Y., Lu, Y., Huang, Y. - M., Wang, M., Ling, W., Sui, Y., & Zhao, H. - L. (2020). Obesity in patients with COVID-19: A systematic review and meta-analysis. *Metabolism*, 113, 154378.

129. Kuperberg, S. J., & Navetta-Modrov, B. (2021). The role of obesity in the immunopathogenesis of COVID-19 respiratory disease and critical illness. *American Journal of Respiratory Cell and Molecular Biology*, <https://doi.org/10.1165/rcmb.2020-0236TR>

130. O'rourke, R. W., & Lumeng, C. N. (2021). Pathways to severe COVID-19 for people with obesity. *Obesity*, 29, 645–653.

131. Moscatelli, F., Sessa, F., Valenzano, A., Polito, R., Monda, V., Cibelli, G., Villano, I., Pisanello, D., Perrella, M., Daniele, A., Monda, M., Messina, G., & Messina, A. (2021). COVID-19: role of nutrition and supplementation. *Nutrients*, 13, 976. <https://doi.org/10.3390/nu13030976>

132. Barber, T. M., Valsamakis, G., Mastorakos, G., Hanson, P., Kyrou, I., Randeva, H. S., & Weickert, M. O. (2021). Dietary influences on the microbiota-gut-brain axis. *International Journal of Molecular Sciences*, 22, 3502. <https://doi.org/10.3390/ijms22073502>

133. Favre, L., Pantet, O., & Olivgeris, M. P. (2021). Obesity and COVID-19: Mechanisms involved in the collusion of two pandemics. *Revue Médicale Suisse*, 17, 558–563.

134. Coppock, S. W. (2001). Pro-inflammatory cytokines and adipose tissue. *The Proceedings of the Nutrition Society*, 60, 349–356.

135. Varì, R., Scazzocchio, B., Silenzi, A., Giovannini, C., & Masella, R. (2021). Obesity-associated inflammation: Does curcumin exert a beneficial role? *Nutrients*, 13, 1021. <https://doi.org/10.3390/nu13031021>

136. Ellulu, M. S., Patimah, I., Khaza'ai, H., Rahmat, A., & Abed, Y. (2017). Obesity and inflammation: The linking mechanism and the complications. *Archives of Medical Science*, 13, 851–863.

137. Anderson, G., & Reiter, R. J. (2020). Melatonin: Roles in influenza, Covid-19, and other viral infections. *Reviews in Medical Virology*, 30, e2109. <https://doi.org/10.1002/rmv.2109>

138. Dhar, D., & Mohanty, A. (2020). Gut microbiota and Covid-19 – possible link and implications. *Virus Research*, 285, 198018, <https://doi.org/10.1016/j.virusres.2020.198018>

139. Neurath, M. F. (2020). COVID-19 and immunomodulation in IBD. *Gut*, 69, 1335–1342.

140. Kalantar-Zadeh, K., Ward, S. A., Kalantar-Zadeh, K., & El-Omar, E. M. (2020). Considering the effects of microbiome and diet on SARS-CoV-2 infection: Nanotechnology roles. *ACS Nano*;5179-5182, <https://doi.org/10.1021/acsnano.0c03402>

141. Iddir, M., Brito, A., Dingeo, G., Fernandez Del Campo, S. S., Samouda, H., La Frano, M. R., & Bohn, T. (2020). Strengthening the immune

system and reducing inflammation and oxidative stress through diet and nutrition: considerations during the COVID-19 crisis. *Nutrients*, 12, 1562. <https://doi.org/10.3390/nu12061562>

142. Conte, L., & Toraldo, D. M. (2020). Targeting the gut-lung microbiota axis by means of a high-fibre diet and probiotics may have anti-inflammatory effects in COVID-19 infection. *Therapeutic Advances in Respiratory Disease*, 14, 175346662093717. <https://doi.org/10.1177/1753466620937170>

143. Antunes, A. E. C., Vinderola, G., Xavier-Santos, D., & Sivieri, K. (2020). Potential contribution of beneficial microbes to face the COVID-19 pandemic. *Food Research International*, 136, 109577. <https://doi.org/10.1016/j.foodres.2020.109577>

144. Jawhara, S. (2020). How to boost the immune defence prior to respiratory virus infections with the special focus on coronavirus infections. *Gut Pathogens*, 12: 47. <https://doi.org/10.1186/s13099-020-00385-2>

145. Onishi, J. C., Häggblom, M. M., & Shapses, S. A. (2020). Can dietary fatty acids affect the COVID-19 infection outcome in vulnerable populations? *mBio*, 11, e01723-20. <https://doi.org/10.1128/mBio.01723-20>.

146. Suardi, C., Cazzaniga, E., Graci, S., Dongo, D., & Palestini, P. (2021). Link between viral infections, immune system, inflammation and diet. *International Journal of Environmental Research and Public Health*, 18, 2455. <https://doi.org/10.3390/ijerph18052455>

147. Fedullo, A. L., Schiattarella, A., Morlando, M., Raguzzini, A., Toti, E., De Franciscis, P., & Peluso, I. (2021). Mediterranean diet for the prevention of gestational diabetes in the Covid-19 era: Implications of IL-6 in diabesity. *International Journal of Molecular Sciences*, 22, 1213. <https://doi.org/10.3390/ijms22031213>

148. Lv, L., Jiang, H., Chen, Y., Gu, S., Xia, J., Zhang, H., Lu, Y., Yan, R., & Li, L. (2021). The faecal metabolome in COVID-19 patients is altered and associated with clinical features and gut microbes. *Analytica Chimica Acta*, 1152, 338267. <https://doi.org/10.1016/j.aca.2021.338267>

149. Menni, C., Louca, P., Berry, S. E., Vijay, A., Astbury, S., Leeming, E. R., Gibson, R., Asnicar, F., Piccinno, G., Wolf, J., Davies, R., Mangino, M., Segata, N., Spector, T. D., & Valdes, A. M. (2021). High intake of vegetables is linked to lower white blood cell profile and the effect is mediated by the gut microbiome. *Bmc Medicine [Electronic Resource]*, 19, 37. <https://doi.org/10.1186/s12916-021-01913-w>

150. Greene, M. W., Roberts, A. P., & Frugé, A. D. (2021). Negative association between Mediterranean diet adherence and COVID-19 cases and related deaths in Spain and 23 OECD Countries: An ecological study. *Frontiers in Nutrition*, 8, 591964.

151. Rishi, P., Thakur, K., Vij, S., Rishi, L., Singh, A., Kaur, I. P., Patel, S. K. S., Lee, J. - K., & Kalia, V. C. (2020). Diet, gut microbiota and Covid-19. *Indian Journal of Microbiology*, 60, 420–429.

How to cite this article: Luthra-Guptasarma, M., & Guptasarma, P. (2021). Does chronic inflammation cause acute inflammation to spiral into hyper-inflammation in a manner modulated by diet and the gut microbiome, in severe Covid-19? *BioEssays*, 43, e2000211. <https://doi.org/10.1002/bies.202000211>